Snapshot: Towards Application-centered Models for Pedestrian Trajectory Prediction in Urban Traffic Environments
- URL: http://arxiv.org/abs/2409.01971v1
- Date: Tue, 3 Sep 2024 15:15:49 GMT
- Title: Snapshot: Towards Application-centered Models for Pedestrian Trajectory Prediction in Urban Traffic Environments
- Authors: Nico Uhlemann, Yipeng Zhou, Tobias Mohr, Markus Lienkamp,
- Abstract summary: Snapshot is a feed-forward neural network that outperforms the current state of the art while utilizing significantly less information.
By integrating Snapshot into a modular autonomous driving software stack, we showcase its real-world applicability.
- Score: 9.025558624315817
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper explores pedestrian trajectory prediction in urban traffic while focusing on both model accuracy and real-world applicability. While promising approaches exist, they are often not publicly available, revolve around pedestrian datasets excluding traffic-related information, or resemble architectures that are either not real-time capable or robust. To address these limitations, we first introduce a dedicated benchmark based on Argoverse 2, specifically targeting pedestrians in urban settings. Following this, we present Snapshot, a modular, feed-forward neural network that outperforms the current state of the art while utilizing significantly less information. Despite its agent-centric encoding scheme, Snapshot demonstrates scalability, real-time performance, and robustness to varying motion histories. Moreover, by integrating Snapshot into a modular autonomous driving software stack, we showcase its real-world applicability
Related papers
- Motion Forecasting in Continuous Driving [41.6423398623095]
In autonomous driving, motion forecasting takes place repeatedly and continuously as the self-driving car moves.
Existing forecasting methods process each driving scene within a certain range independently.
We propose a novel motion forecasting framework for continuous driving, named RealMotion.
arXiv Detail & Related papers (2024-10-08T13:04:57Z) - PIP-Net: Pedestrian Intention Prediction in the Wild [11.799731429829603]
PIP-Net is a novel framework designed to predict pedestrian crossing intentions by AVs in real-world urban scenarios.
We offer two variants of PIP-Net designed for different camera mounts and setups.
The proposed model employs a recurrent and temporal attention-based solution, outperforming state-of-the-art performance.
For the first time, we present the Urban-PIP dataset, a customised pedestrian intention prediction dataset.
arXiv Detail & Related papers (2024-02-20T08:28:45Z) - Efficient Baselines for Motion Prediction in Autonomous Driving [7.608073471097835]
Motion Prediction (MP) of multiple surroundings agents is a crucial task in arbitrarily complex environments.
We aim to develop compact models using State-Of-The-Art (SOTA) techniques for MP, including attention mechanisms and GNNs.
arXiv Detail & Related papers (2023-09-06T22:18:16Z) - Implicit Occupancy Flow Fields for Perception and Prediction in
Self-Driving [68.95178518732965]
A self-driving vehicle (SDV) must be able to perceive its surroundings and predict the future behavior of other traffic participants.
Existing works either perform object detection followed by trajectory of the detected objects, or predict dense occupancy and flow grids for the whole scene.
This motivates our unified approach to perception and future prediction that implicitly represents occupancy and flow over time with a single neural network.
arXiv Detail & Related papers (2023-08-02T23:39:24Z) - TrafficBots: Towards World Models for Autonomous Driving Simulation and
Motion Prediction [149.5716746789134]
We show data-driven traffic simulation can be formulated as a world model.
We present TrafficBots, a multi-agent policy built upon motion prediction and end-to-end driving.
Experiments on the open motion dataset show TrafficBots can simulate realistic multi-agent behaviors.
arXiv Detail & Related papers (2023-03-07T18:28:41Z) - Context-Aware Timewise VAEs for Real-Time Vehicle Trajectory Prediction [4.640835690336652]
We present ContextVAE, a context-aware approach for multi-modal vehicle trajectory prediction.
Our approach takes into account both the social features exhibited by agents on the scene and the physical environment constraints.
In all tested datasets, ContextVAE models are fast to train and provide high-quality multi-modal predictions in real-time.
arXiv Detail & Related papers (2023-02-21T18:42:24Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
spatial-temporal Graph Neural Network (GNN) models have emerged as one of the most promising methods to solve this problem.
We propose a novel propagation delay-aware dynamic long-range transFormer, namely PDFormer, for accurate traffic flow prediction.
Our method can not only achieve state-of-the-art performance but also exhibit competitive computational efficiency.
arXiv Detail & Related papers (2023-01-19T08:42:40Z) - Dfferentiable Raycasting for Self-supervised Occupancy Forecasting [52.61762537741392]
Motion planning for autonomous driving requires learning how the environment around an ego-vehicle evolves with time.
In this paper, we use geometric occupancy as a natural alternative to view-dependent representations such as freespace.
Our key insight is to use differentiable raycasting to "render" future occupancy predictions into future LiDAR sweep predictions.
arXiv Detail & Related papers (2022-10-04T21:35:21Z) - Exploring Map-based Features for Efficient Attention-based Vehicle
Motion Prediction [3.222802562733787]
Motion prediction of multiple agents is a crucial task in arbitrarily complex environments.
We show how to achieve competitive performance on the Argoverse 1.0 Benchmark using efficient attention-based models.
arXiv Detail & Related papers (2022-05-25T22:38:11Z) - Pedestrian Stop and Go Forecasting with Hybrid Feature Fusion [87.77727495366702]
We introduce the new task of pedestrian stop and go forecasting.
Considering the lack of suitable existing datasets for it, we release TRANS, a benchmark for explicitly studying the stop and go behaviors of pedestrians in urban traffic.
We build it from several existing datasets annotated with pedestrians' walking motions, in order to have various scenarios and behaviors.
arXiv Detail & Related papers (2022-03-04T18:39:31Z) - Safety-Oriented Pedestrian Motion and Scene Occupancy Forecasting [91.69900691029908]
We advocate for predicting both the individual motions as well as the scene occupancy map.
We propose a Scene-Actor Graph Neural Network (SA-GNN) which preserves the relative spatial information of pedestrians.
On two large-scale real-world datasets, we showcase that our scene-occupancy predictions are more accurate and better calibrated than those from state-of-the-art motion forecasting methods.
arXiv Detail & Related papers (2021-01-07T06:08:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.