論文の概要: UNSURE: Unknown Noise level Stein's Unbiased Risk Estimator
- arxiv url: http://arxiv.org/abs/2409.01985v1
- Date: Tue, 3 Sep 2024 15:26:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 00:50:24.725082
- Title: UNSURE: Unknown Noise level Stein's Unbiased Risk Estimator
- Title(参考訳): UNSURE:未知の騒音レベルステインのアンバイアスド・リスク・エスペクター
- Authors: Julián Tachella, Mike Davies, Laurent Jacques,
- Abstract要約: ノイズの多いデータのみから学習できる画像再構成のための自己教師付き学習法が数多く提案されている。
我々は、SUREに基づく新しいアプローチを提案するが、標準のSUREとは異なり、ノイズレベルに関する知識は必要ない。
提案手法は,様々な画像逆問題において,既存の自己監督手法よりも優れていることを示す。
- 参考スコア(独自算出の注目度): 12.289101615816595
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, many self-supervised learning methods for image reconstruction have been proposed that can learn from noisy data alone, bypassing the need for ground-truth references. Most existing methods cluster around two classes: i) Noise2Self and similar cross-validation methods that require very mild knowledge about the noise distribution, and ii) Stein's Unbiased Risk Estimator (SURE) and similar approaches that assume full knowledge of the distribution. The first class of methods is often suboptimal compared to supervised learning, and the second class is often impractical, as the noise level is generally unknown in real-world applications. In this paper, we provide a theoretical framework that characterizes this expressivity-robustness trade-off and propose a new approach based on SURE, but unlike the standard SURE, does not require knowledge about the noise level. Throughout a series of experiments, we show that the proposed estimator outperforms other existing self-supervised methods on various imaging inverse problems.
- Abstract(参考訳): 近年,ノイズの多いデータのみから学習できる画像再構成のための自己教師型学習法が数多く提案されている。
既存のメソッドのほとんどは、2つのクラスの周りにクラスタリングします。
一 騒音分布に関する非常に穏やかな知識を必要とする騒音2自己及び類似のクロスバリデーション方法
二 スタインの無バイアスリスク推定器(SURE)及び分布の完全な知識を前提とした同様のアプローチ
第1の手法は教師付き学習と比較して最適でない場合が多く、第2の手法は現実の応用では一般にノイズレベルが知られていないため、実用的でない場合が多い。
本稿では,この表現性-腐食性トレードオフを特徴付ける理論的枠組みを提案し,SUREに基づく新しいアプローチを提案するが,標準のSUREとは異なり,ノイズレベルに関する知識は不要である。
一連の実験を通して,提案した推定器は,様々な画像逆問題において,既存の自己監督手法よりも優れていることを示す。
関連論文リスト
- Correcting Noisy Multilabel Predictions: Modeling Label Noise through Latent Space Shifts [4.795811957412855]
ほとんどの現実世界の機械学習アプリケーションでは、データのノイズは避けられないように思える。
マルチラベル分類における雑音ラベル学習の分野について検討した。
我々のモデルは、雑音のラベル付けは潜伏変数の変化から生じると仮定し、より堅牢で有益な学習手段を提供する。
論文 参考訳(メタデータ) (2025-02-20T05:41:52Z) - Learning with Open-world Noisy Data via Class-independent Margin in Dual Representation Space [25.472718931422307]
オープンワールドノイズを頑健に扱える新しい二空間共同学習法を提案する。
CIFAR80Nの平均精度は4.55%、AUROCは6.17%向上した。
論文 参考訳(メタデータ) (2025-01-19T14:09:04Z) - Enhance Vision-Language Alignment with Noise [59.2608298578913]
本研究では,凍結モデルがカスタマイズノイズによって微調整可能であるか検討する。
ビジュアルエンコーダとテキストエンコーダの両方にノイズを注入することでCLIPを微調整できる正インセンティブノイズ(PiNI)を提案する。
論文 参考訳(メタデータ) (2024-12-14T12:58:15Z) - Latent Class-Conditional Noise Model [54.56899309997246]
本稿では,ベイズ的枠組みの下での雑音遷移をパラメータ化するためのLatent Class-Conditional Noise Model (LCCN)を提案する。
次に、Gibs sampler を用いて遅延真のラベルを効率的に推測できる LCCN の動的ラベル回帰法を導出する。
提案手法は,サンプルのミニバッチから事前の任意チューニングを回避するため,ノイズ遷移の安定な更新を保護している。
論文 参考訳(メタデータ) (2023-02-19T15:24:37Z) - Deep Variation Prior: Joint Image Denoising and Noise Variance
Estimation without Clean Data [2.3061446605472558]
本稿では,1つの共同学習フレームワークにおける画像復調と雑音分散推定の課題について検討する。
我々は、教師なしのディープラーニングフレームワークであるDVPを構築し、デノイザを同時に学習し、ノイズ分散を推定する。
提案手法では, クリーンなトレーニング画像やノイズ推定の外部ステップは必要とせず, ノイズ画像のみを用いて最小2乗誤差を近似する。
論文 参考訳(メタデータ) (2022-09-19T17:29:32Z) - Deep Active Learning with Noise Stability [24.54974925491753]
ラベルのないデータの不確実性推定は、アクティブな学習に不可欠である。
本稿では,雑音の安定性を利用して不確実性を推定する新しいアルゴリズムを提案する。
本手法はコンピュータビジョン,自然言語処理,構造データ解析など,様々なタスクに適用可能である。
論文 参考訳(メタデータ) (2022-05-26T13:21:01Z) - The Optimal Noise in Noise-Contrastive Learning Is Not What You Think [80.07065346699005]
この仮定から逸脱すると、実際により良い統計的推定結果が得られることが示される。
特に、最適な雑音分布は、データと異なり、また、別の家族からさえも異なる。
論文 参考訳(メタデータ) (2022-03-02T13:59:20Z) - Learning Noise Transition Matrix from Only Noisy Labels via Total
Variation Regularization [88.91872713134342]
本稿では,雑音遷移行列を推定し,同時に分類器を学習する理論的基礎付け手法を提案する。
提案手法の有効性を,ベンチマークおよび実世界のデータセットを用いた実験により示す。
論文 参考訳(メタデータ) (2021-02-04T05:09:18Z) - Robust Imitation Learning from Noisy Demonstrations [81.67837507534001]
我々は,対称的損失を伴う分類リスクを最適化することにより,ロバストな模倣学習を実現することができることを示す。
擬似ラベルと協調学習を効果的に組み合わせた新しい模倣学習法を提案する。
連続制御ベンチマークによる実験結果から,本手法は最先端手法よりも頑健であることがわかった。
論文 参考訳(メタデータ) (2020-10-20T10:41:37Z) - Confidence Scores Make Instance-dependent Label-noise Learning Possible [129.84497190791103]
ノイズのあるラベルで学習する際、そのラベルはノイズモデルと呼ばれる遷移分布に従ってランダムに他のクラスに移動することができる。
我々は、各インスタンスラベル対に信頼スコアを付与する、信頼スコア付きインスタンス依存ノイズ(CSIDN)を導入する。
信頼性スコアの助けを借りて、各インスタンスの遷移分布を推定できる。
論文 参考訳(メタデータ) (2020-01-11T16:15:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。