論文の概要: Efficient Point Cloud Classification via Offline Distillation Framework and Negative-Weight Self-Distillation Technique
- arxiv url: http://arxiv.org/abs/2409.02020v1
- Date: Tue, 3 Sep 2024 16:12:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 00:37:19.088677
- Title: Efficient Point Cloud Classification via Offline Distillation Framework and Negative-Weight Self-Distillation Technique
- Title(参考訳): オフライン蒸留フレームワークと負重自己蒸留技術による効率的な点雲分類
- Authors: Qiang Zheng, Chao Zhang, Jian Sun,
- Abstract要約: 本稿では,教師モデルと生徒モデルの両方の同時ロードを回避する,革新的なオフライン記録戦略を提案する。
このアプローチは教師モデルに多数の追加サンプルを投入し、データ拡張パラメータと対応するロジット出力の両方を記録する。
実験により, 提案した蒸留方式により, 学生モデルが最先端モデルに匹敵する性能を達成できることが実証された。
- 参考スコア(独自算出の注目度): 46.266960248570086
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid advancement in point cloud processing technologies has significantly increased the demand for efficient and compact models that achieve high-accuracy classification. Knowledge distillation has emerged as a potent model compression technique. However, traditional KD often requires extensive computational resources for forward inference of large teacher models, thereby reducing training efficiency for student models and increasing resource demands. To address these challenges, we introduce an innovative offline recording strategy that avoids the simultaneous loading of both teacher and student models, thereby reducing hardware demands. This approach feeds a multitude of augmented samples into the teacher model, recording both the data augmentation parameters and the corresponding logit outputs. By applying shape-level augmentation operations such as random scaling and translation, while excluding point-level operations like random jittering, the size of the records is significantly reduced. Additionally, to mitigate the issue of small student model over-imitating the teacher model's outputs and converging to suboptimal solutions, we incorporate a negative-weight self-distillation strategy. Experimental results demonstrate that the proposed distillation strategy enables the student model to achieve performance comparable to state-of-the-art models while maintaining lower parameter count. This approach strikes an optimal balance between performance and complexity. This study highlights the potential of our method to optimize knowledge distillation for point cloud classification tasks, particularly in resource-constrained environments, providing a novel solution for efficient point cloud analysis.
- Abstract(参考訳): ポイントクラウド処理技術の急速な進歩により、高精度な分類を実現するための効率的でコンパクトなモデルの需要が大幅に増加した。
知識蒸留は強力なモデル圧縮技術として登場した。
しかし、従来のKDは、大規模な教師モデルの前方推定に広範な計算資源を必要とすることが多く、それによって学生モデルの訓練効率が低下し、リソース需要が増大する。
これらの課題に対処するため,教師モデルと学生モデルの両方の同時ロードを回避し,ハードウェア要求の低減を図る,革新的なオフライン記録戦略を導入する。
このアプローチは教師モデルに多数の追加サンプルを投入し、データ拡張パラメータと対応するロジット出力の両方を記録する。
ランダムなスケーリングや翻訳のような形状レベルの拡張操作を適用することで、ランダムなジッタリングのようなポイントレベルの操作を除外しながら、レコードのサイズを大幅に削減する。
さらに,教師モデルのアウトプットを過度に模倣し,最適でない解に収束する小学生モデルの問題を緩和するため,負の重み付き自己蒸留戦略を取り入れた。
実験結果から, 提案した蒸留方式により, 低パラメータ数を維持しつつ, 最先端モデルに匹敵する性能が得られることが示された。
このアプローチは、パフォーマンスと複雑性の最適なバランスをとっています。
本研究は,特に資源制約環境におけるポイントクラウド分類タスクに対する知識蒸留の最適化の可能性を強調し,効率的なポイントクラウド解析のための新しいソリューションを提供する。
関連論文リスト
- Dual-Model Distillation for Efficient Action Classification with Hybrid Edge-Cloud Solution [1.8029479474051309]
我々は、より大規模で正確なクラウドベースモデルに必要に応じて遅延しながら、より小さなモデルのローカル処理効率を活用するハイブリッドエッジクラウドソリューションを設計する。
具体的には、エッジモデルの出力が不確かである場合に予測可能な軽量スイッチャーモデルをトレーニングするための、新しい教師なしデータ生成手法であるDual-Model Distillation(DMD)を提案する。
動作分類タスクの実験結果から,我々のフレームワークは計算オーバーヘッドを少なくするだけでなく,大規模モデルのみを使用する場合と比較して精度も向上することが示された。
論文 参考訳(メタデータ) (2024-10-16T02:06:27Z) - Exploring and Enhancing the Transfer of Distribution in Knowledge Distillation for Autoregressive Language Models [62.5501109475725]
知識蒸留(KD)は、より小さな学生モデルを模倣するように訓練することで、大きな教師モデルを圧縮する技術である。
本稿では、教師ネットワークが小さなオンラインモジュールを統合し、学生モデルと同時学習するオンライン知識蒸留(OKD)について紹介する。
OKDは、様々なモデルアーキテクチャやサイズにおけるリードメソッドのパフォーマンスを達成または超え、トレーニング時間を最大4倍に短縮する。
論文 参考訳(メタデータ) (2024-09-19T07:05:26Z) - Adv-KD: Adversarial Knowledge Distillation for Faster Diffusion Sampling [2.91204440475204]
拡散確率モデル(DPM)は、深層生成モデルの強力なクラスとして登場した。
それらは、サンプル生成中にシーケンシャルなデノイングステップに依存している。
モデルアーキテクチャに直接位相を分解する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-05-31T08:19:44Z) - Uncovering the Hidden Cost of Model Compression [43.62624133952414]
視覚プロンプティングは、コンピュータビジョンにおける伝達学習の重要な方法として登場した。
モデル圧縮は視覚的プロンプトベース転送の性能に有害である。
しかし、量子化によってモデルが圧縮されるとき、キャリブレーションに対する負の効果は存在しない。
論文 参考訳(メタデータ) (2023-08-29T01:47:49Z) - BOOT: Data-free Distillation of Denoising Diffusion Models with
Bootstrapping [64.54271680071373]
拡散モデルは多様な画像を生成する優れた可能性を示している。
知識蒸留は、推論ステップの数を1つか数に減らすための治療法として最近提案されている。
本稿では,効率的なデータフリー蒸留アルゴリズムにより限界を克服するBOOTと呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2023-06-08T20:30:55Z) - Directed Acyclic Graph Factorization Machines for CTR Prediction via
Knowledge Distillation [65.62538699160085]
本稿では,既存の複雑な相互作用モデルから,知識蒸留によるCTR予測のための高次特徴相互作用を学習するための非巡回グラフファクトリゼーションマシン(KD-DAGFM)を提案する。
KD-DAGFMは、オンラインとオフラインの両方の実験において、最先端のFLOPの21.5%未満で最高の性能を達成する。
論文 参考訳(メタデータ) (2022-11-21T03:09:42Z) - DQ-BART: Efficient Sequence-to-Sequence Model via Joint Distillation and
Quantization [75.72231742114951]
BARTやT5のような大規模事前学習シーケンス・ツー・シーケンスモデルは、多くの生成NLPタスクで最先端のパフォーマンスを達成する。
これらのモデルは、大きなメモリ要件と高いレイテンシのため、リソース制約のあるシナリオにおいて大きな課題となる。
そこで,本論文では,教師モデルから学生モデルへの知識の伝達と,学生モデルの定量化と定量化について提案する。
論文 参考訳(メタデータ) (2022-03-21T18:04:25Z) - Powerpropagation: A sparsity inducing weight reparameterisation [65.85142037667065]
我々は、本質的にスパースモデルにつながるニューラルネットワークの新しい重みパラメータ化であるPowerpropagationを紹介した。
この方法で訓練されたモデルは同様の性能を示すが、0で明らかに高い密度の分布を持ち、より多くのパラメータを安全に刈り取ることができる。
ここでは、Powerpropagationと従来のウェイトプルーニング技術と、最近の最先端スパース・トゥ・スパースアルゴリズムを組み合わせることで、ImageNetベンチマークで優れたパフォーマンスを示す。
論文 参考訳(メタデータ) (2021-10-01T10:03:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。