論文の概要: Deep Neural Implicit Representation of Accessibility for Multi-Axis Manufacturing
- arxiv url: http://arxiv.org/abs/2409.02115v2
- Date: Thu, 5 Sep 2024 16:47:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 12:05:46.100141
- Title: Deep Neural Implicit Representation of Accessibility for Multi-Axis Manufacturing
- Title(参考訳): 多軸加工におけるアクセシビリティの深部ニューラルネットワークによる表現
- Authors: George P. Harabin, Amir Mirzendehdel, Morad Behandish,
- Abstract要約: 我々はディープニューラルネットワーク(DNN)を用いた衝突計測の暗黙的表現を開発する。
本手法は, 回転のスパースサンプリングから衝突測度を正確に補間することができ, メモリフットプリントの小さい衝突測度場を表現できることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: One of the main concerns in design and process planning for multi-axis additive and subtractive manufacturing is collision avoidance between moving objects (e.g., tool assemblies) and stationary objects (e.g., a part unified with fixtures). The collision measure for various pairs of relative rigid translations and rotations between the two pointsets can be conceptualized by a compactly supported scalar field over the 6D non-Euclidean configuration space. Explicit representation and computation of this field is costly in both time and space. If we fix $O(m)$ sparsely sampled rotations (e.g., tool orientations), computation of the collision measure field as a convolution of indicator functions of the 3D pointsets over a uniform grid (i.e., voxelized geometry) of resolution $O(n^3)$ via fast Fourier transforms (FFTs) scales as in $O(mn^3 \log n)$ in time and $O(mn^3)$ in space. In this paper, we develop an implicit representation of the collision measure field via deep neural networks (DNNs). We show that our approach is able to accurately interpolate the collision measure from a sparse sampling of rotations, and can represent the collision measure field with a small memory footprint. Moreover, we show that this representation can be efficiently updated through fine-tuning to more efficiently train the network on multi-resolution data, as well as accommodate incremental changes to the geometry (such as might occur in iterative processes such as topology optimization of the part subject to CNC tool accessibility constraints).
- Abstract(参考訳): 多軸添加および減算製造のための設計およびプロセス計画における主な関心事は、移動物体(例えば、ツールアセンブリ)と静止物体(例えば、フィクスチャと一体化された部分)の衝突回避である。
相対的剛性変換と2点間の回転の様々な対の衝突測度は、6次元非ユークリッド構成空間上のコンパクトに支持されたスカラー場によって概念化することができる。
この場の明示的な表現と計算は時間と空間の両方で費用がかかる。
もし$Oを修正すれば
(m)$ sparsely sampled rotations(例:ツールの向き)、衝突測度場の計算は、$O(mn^3) \logのような高速フーリエ変換(FFT)スケールによる解像度$O(n^3)$の均一格子上の3次元点集合の指標関数の畳み込みである。
n) 時間で$、空間で$O(mn^3)$。
本稿では,ディープニューラルネットワーク(DNN)を用いた衝突計測の暗黙的表現を開発する。
本手法は, 回転のスパースサンプリングから衝突測度を正確に補間することができ, メモリフットプリントの小さい衝突測度場を表現できることを示す。
さらに,この表現を微調整により効率的に更新し,マルチレゾリューションデータ上でネットワークをより効率的にトレーニングし,幾何への漸進的な変化を許容できることを示す(例えば,CNCツールアクセシビリティ制約を受ける部分のトポロジ最適化など)。
関連論文リスト
- Spatial Pruned Sparse Convolution for Efficient 3D Object Detection [41.62839541489369]
3Dシーンは多数のバックグラウンドポイントによって支配されており、主に前景オブジェクトにフォーカスする必要がある検出タスクには冗長である。
本稿では,既存の3D CNNの主要なコンポーネントを分析し,データの冗長性を無視し,さらにダウンサンプリングプロセスでそれを増幅することにより,余分な計算オーバーヘッドと不要な計算オーバーヘッドを発生させる。
SPS-ConvとSPSS-ConvとSPRSの2つの変種を含む新しい畳み込み演算子を提案する。
論文 参考訳(メタデータ) (2022-09-28T16:19:06Z) - SVNet: Where SO(3) Equivariance Meets Binarization on Point Cloud
Representation [65.4396959244269]
本論文は,3次元学習アーキテクチャを構築するための一般的なフレームワークを設計することによる課題に対処する。
提案手法はPointNetやDGCNNといった一般的なバックボーンに適用できる。
ModelNet40、ShapeNet、および実世界のデータセットであるScanObjectNNの実験では、この手法が効率、回転、精度の間の大きなトレードオフを達成することを示した。
論文 参考訳(メタデータ) (2022-09-13T12:12:19Z) - PnP-DETR: Towards Efficient Visual Analysis with Transformers [146.55679348493587]
近年、DeTRはトランスフォーマーを用いたソリューションビジョンタスクの先駆者であり、画像特徴マップを直接オブジェクト結果に変換する。
最近の変圧器を用いた画像認識モデルとTTは、一貫した効率向上を示す。
論文 参考訳(メタデータ) (2021-09-15T01:10:30Z) - Dynamic Convolution for 3D Point Cloud Instance Segmentation [146.7971476424351]
動的畳み込みに基づく3次元点雲からのインスタンスセグメンテーション手法を提案する。
我々は、同じ意味圏と閉投票を持つ等質点を幾何学的遠近点に対して収集する。
提案手法は提案不要であり、代わりに各インスタンスの空間的および意味的特性に適応する畳み込みプロセスを利用する。
論文 参考訳(メタデータ) (2021-07-18T09:05:16Z) - Equivariant Point Network for 3D Point Cloud Analysis [17.689949017410836]
点雲解析のための実効的で実用的なSE(3)(3次元翻訳と回転)同変ネットワークを提案する。
まず,6次元の畳み込みを2つの分離可能な畳み込み作用素に分解する新しい枠組みであるSE(3)分離点畳み込みを提案する。
第2に,同変特徴の表現性を効果的に活用するアテンション層を導入する。
論文 参考訳(メタデータ) (2021-03-25T21:57:10Z) - ResNet-LDDMM: Advancing the LDDMM Framework Using Deep Residual Networks [86.37110868126548]
本研究では,eulerの離散化スキームに基づく非定常ode(フロー方程式)の解法として,深層残留ニューラルネットワークを用いた。
複雑なトポロジー保存変換の下での3次元形状の多種多様な登録問題について述べる。
論文 参考訳(メタデータ) (2021-02-16T04:07:13Z) - Reinforced Axial Refinement Network for Monocular 3D Object Detection [160.34246529816085]
モノクロ3次元物体検出は、2次元入力画像から物体の位置と特性を抽出することを目的としている。
従来のアプローチでは、空間から3D境界ボックスをサンプリングし、対象オブジェクトと各オブジェクトの関係を推定するが、有効サンプルの確率は3D空間で比較的小さい。
我々は,まず最初の予測から始めて,各ステップで1つの3dパラメータだけを変えて,基礎的真理に向けて徐々に洗練することを提案する。
これは、いくつかのステップの後に報酬を得るポリシーを設計する必要があるため、最適化するために強化学習を採用します。
論文 参考訳(メタデータ) (2020-08-31T17:10:48Z) - Dense Non-Rigid Structure from Motion: A Manifold Viewpoint [162.88686222340962]
Non-Rigid Structure-from-Motion (NRSfM) 問題は、複数のフレームにまたがる2次元特徴対応から変形物体の3次元形状を復元することを目的としている。
提案手法は,ノイズに対する精度,スケーラビリティ,堅牢性を大幅に向上させる。
論文 参考訳(メタデータ) (2020-06-15T09:15:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。