Microwave-free imaging magnetometry with nitrogen-vacancy centers in nanodiamonds at near-zero field
- URL: http://arxiv.org/abs/2409.02199v1
- Date: Tue, 3 Sep 2024 18:08:48 GMT
- Title: Microwave-free imaging magnetometry with nitrogen-vacancy centers in nanodiamonds at near-zero field
- Authors: Saravanan Sengottuvel, Omkar Dhungel, Mariusz Mrózek, Arne Wickenbrock, Dmitry Budker, Wojciech Gawlik, Adam M. Wojciechowski,
- Abstract summary: Magnetometry using Nitrogen-Vacancy (NV) color centers in diamond predominantly relies on microwave spectroscopy.
This work demonstrates a wide-field, microwave-free imaging magnetometer utilizing NV centers in nanodiamonds.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Magnetometry using Nitrogen-Vacancy (NV) color centers in diamond predominantly relies on microwave spectroscopy. However, microwaves may hinder certain studies involving biological systems or thin conductive samples. This work demonstrates a wide-field, microwave-free imaging magnetometer utilizing NV centers in nanodiamonds by exploiting the cross-relaxation feature near zero magnetic fields under ambient conditions without applying microwaves. For this purpose, we measure the center shift, contrast, and linewidth of the zero-field cross-relaxation in 140 nm nanodiamonds drop-cast on a current-carrying conductive pattern while scanning a background magnetic field, achieving a sensitivity of 4.5 $\mathrm{\mu T/\sqrt{Hz}}$. Our work allows for applying the NV zero-field feature in nanodiamonds for magnetic field sensing in the zero and low-field regimes and highlights the potential for microwave-free all-optical wide-field magnetometry based on nanodiamonds.
Related papers
- Pulsed magnetic field gradient on a tip for nanoscale imaging of spins [0.0]
We present a switchable magnetic field gradient on a tip, which is designed to provide a local and controllable magnetic field with a high gradient on the nanometer scale.
We incorporate the gradient field with a nanoscale magnetic resonance sensor, a single nitrogen-vacancy (NV) center in diamond, to provide high-resolution magnetic resonance imaging.
arXiv Detail & Related papers (2024-09-26T09:56:02Z) - Imaging magnetism evolution of magnetite to megabar pressure range with
quantum sensors in diamond anvil cell [57.91882523720623]
We develop an in-situ magnetic detection technique at megabar pressures with high sensitivity and sub-microscale spatial resolution.
We observe the macroscopic magnetic transition of Fe3O4 in the megabar pressure range from strong ferromagnetism (alpha-Fe3O4) to weak ferromagnetism (beta-Fe3O4) and finally to non-magnetism (gamma-Fe3O4)
The presented method can potentially investigate the spin-orbital coupling and magnetism-superconductivity competition in magnetic systems.
arXiv Detail & Related papers (2023-06-13T15:19:22Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - Electrical readout microwave-free sensing with diamond [0.0]
Photoelectric readout of ground-state cross-relaxation features serves as a method for measuring electron spin resonance spectra of nanoscale electronic environments.
This approach may offer potential solutions for determining spin densities and characterizing local environment.
arXiv Detail & Related papers (2022-01-05T19:40:10Z) - Zero-field magnetometry using hyperfine-biased nitrogen-vacancy centers
near diamond surfaces [5.189354274663932]
We show that a 130 MHz coupling from a first-shell 13C nuclear spin can provide an effective bias field to an NV center spin.
With the charge noises suppressed by the strong hyperfine field, the ac magnetometry under zero field also reaches the limit set by decoherence.
The hyperfine-bias enhanced zero-field magnetometry can be combined with dynamical decoupling to enhance single-molecule magnetic resonance spectroscopy.
arXiv Detail & Related papers (2021-09-12T06:37:52Z) - Continuous-Wave Frequency Upconversion with a Molecular Optomechanical
Nanocavity [46.43254474406406]
We use molecular cavity optomechanics to demonstrate upconversion of sub-microwatt continuous-wave signals at $sim$32THz into the visible domain at ambient conditions.
The device consists in a plasmonic nanocavity hosting a small number of molecules. The incoming field resonantly drives a collective molecular vibration, which imprints an optomechanical modulation on a visible pump laser.
arXiv Detail & Related papers (2021-07-07T06:23:14Z) - Angle Locking of a Levitating Diamond using Spin-Diamagnetism [0.0]
We report on angle locking of the crystalline axis of a trapped micro-diamond along an external magnetic field.
Specifically, we use spin population inversion after a ground state level crossing of the NV center to turn the diamond into a diamagnet.
The diamond crystalline axis naturally aligns to the magnetic field with high precision and in the absence of micro-wave, offering bright prospects for applications in biology and spin-mechanical platforms.
arXiv Detail & Related papers (2021-02-26T18:30:04Z) - Laser threshold magnetometry using green light absorption by diamond
nitrogen vacancies in an external cavity laser [52.77024349608834]
Nitrogen vacancy (NV) centers in diamond have attracted considerable recent interest for use in quantum sensing.
We show theoretical sensitivity to magnetic field on the pT/sqrt(Hz) level is possible using a diamond with an optimal density of NV centers.
arXiv Detail & Related papers (2021-01-22T18:58:05Z) - An integrated magnetometry platform with stackable waveguide-assisted
detection channels for sensing arrays [45.82374977939355]
We present a novel architecture which allows us to create NV$-$-centers a few nanometers below the diamond surface.
We experimentally verify the coupling efficiency, showcase the detection of magnetic resonance signals through the waveguides and perform first proof-of-principle experiments in magnetic field and temperature sensing.
In the future, our approach will enable the development of two-dimensional sensing arrays facilitating spatially and temporally correlated magnetometry.
arXiv Detail & Related papers (2020-12-04T12:59:29Z) - Cross-relaxation studies with optically detected magnetic resonances in
nitrogen-vacancy centers in diamond in an external magnetic field [0.0]
Cross-relaxation between nitrogen-vacancy centers and substitutional nitrogen in a diamond crystal was studied.
Optically detected magnetic resonance signals (ODMR) can be used to measure these signals successfully.
arXiv Detail & Related papers (2020-07-01T13:23:22Z) - Optimisation of a diamond nitrogen vacancy centre magnetometer for
sensing of biological signals [44.62475518267084]
We present advances in biomagnetometry using nitrogen vacancy centres in diamond.
We show magnetic field sensitivity of approximately 100 pT/$sqrtHz$ in the DC/low frequency range using a setup designed for biological measurements.
arXiv Detail & Related papers (2020-04-05T18:44:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.