Angle Locking of a Levitating Diamond using Spin-Diamagnetism
- URL: http://arxiv.org/abs/2102.13637v3
- Date: Thu, 28 Oct 2021 17:32:11 GMT
- Title: Angle Locking of a Levitating Diamond using Spin-Diamagnetism
- Authors: M. Perdriat, P. Huillery, C. Pellet-Mary, G. H\'etet
- Abstract summary: We report on angle locking of the crystalline axis of a trapped micro-diamond along an external magnetic field.
Specifically, we use spin population inversion after a ground state level crossing of the NV center to turn the diamond into a diamagnet.
The diamond crystalline axis naturally aligns to the magnetic field with high precision and in the absence of micro-wave, offering bright prospects for applications in biology and spin-mechanical platforms.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The negatively charged nitrogen-vacancy (NV) center in nano- or micro-
diamonds has emerged as a promising magnetic field sensor, as a candidate for
hyper-polarizing paramagnetic species, as well as a tool for spin-mechanics at
the nanoscale. However, NV-doped diamonds are presently not straightforwardly
employable for these applications in a liquid or when levitating under
atmospheric pressures due to the random angular Brownian motion which tends to
rotate the NV quantization axis over the course of the measurments. Here, we
report on angle locking of the crystalline axis of a trapped micro-diamond
along an external magnetic field. Specifically, we use spin population
inversion after a ground state level crossing of the NV center to turn the
diamond into a diamagnet. The diamond crystalline axis naturally aligns to the
magnetic field with high precision and in the absence of micro-wave, offering
bright prospects for applications in biology and spin-mechanical platforms.
Related papers
- Microwave-free imaging magnetometry with nitrogen-vacancy centers in nanodiamonds at near-zero field [0.0]
Magnetometry using Nitrogen-Vacancy (NV) color centers in diamond predominantly relies on microwave spectroscopy.
This work demonstrates a wide-field, microwave-free imaging magnetometer utilizing NV centers in nanodiamonds.
arXiv Detail & Related papers (2024-09-03T18:08:48Z) - Imaging magnetism evolution of magnetite to megabar pressure range with
quantum sensors in diamond anvil cell [57.91882523720623]
We develop an in-situ magnetic detection technique at megabar pressures with high sensitivity and sub-microscale spatial resolution.
We observe the macroscopic magnetic transition of Fe3O4 in the megabar pressure range from strong ferromagnetism (alpha-Fe3O4) to weak ferromagnetism (beta-Fe3O4) and finally to non-magnetism (gamma-Fe3O4)
The presented method can potentially investigate the spin-orbital coupling and magnetism-superconductivity competition in magnetic systems.
arXiv Detail & Related papers (2023-06-13T15:19:22Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - Wide-field magnetometry with nitrogen-vacancy centers in randomly
oriented micro-diamonds [0.46906883107634084]
NV centers in arbitrarily oriented submicrometer-sized diamond powder can be used for sensing the magnetic field.
Our work can be extended to irregular surfaces, which shows a promising path for nanodiamond-based photonic sensors.
arXiv Detail & Related papers (2022-06-13T17:35:06Z) - Optically induced static magnetic field in ensemble of nitrogen-vacancy
centers in diamond [4.734663513676815]
Local magnetic field at the nanoscale is desired for many applications such as spin-qubit-based quantum memories.
Here, we demonstrate photonic spin density (PSD) induced effective static magnetic field for an ensemble of nitrogen-vacancy (NV) centers in bulk diamond.
arXiv Detail & Related papers (2022-05-06T04:38:10Z) - Scanning nitrogen-vacancy center magnetometry in large in-plane magnetic
fields [0.0]
We report fabrication of scanning diamond probes from 110-cut diamond where the spin anisotropy axis lies in the scan plane.
We show that these probes retain their sensitivity in large in-plane fields and demonstrate scanning magnetometry of the domain pattern of Co-NiO films in applied fields up to 40 mT.
arXiv Detail & Related papers (2022-01-17T15:04:19Z) - Quantum control of nuclear spin qubits in a rapidly rotating diamond [62.997667081978825]
Nuclear spins in certain solids couple weakly to their environment, making them attractive candidates for quantum information processing and inertial sensing.
We demonstrate optical nuclear spin polarization and rapid quantum control of nuclear spins in a diamond physically rotating at $1,$kHz, faster than the nuclear spin coherence time.
Our work liberates a previously inaccessible degree of freedom of the NV nuclear spin, unlocking new approaches to quantum control and rotation sensing.
arXiv Detail & Related papers (2021-07-27T03:39:36Z) - Laser threshold magnetometry using green light absorption by diamond
nitrogen vacancies in an external cavity laser [52.77024349608834]
Nitrogen vacancy (NV) centers in diamond have attracted considerable recent interest for use in quantum sensing.
We show theoretical sensitivity to magnetic field on the pT/sqrt(Hz) level is possible using a diamond with an optimal density of NV centers.
arXiv Detail & Related papers (2021-01-22T18:58:05Z) - Nuclear Spin Assisted Magnetic Field Angle Sensing [0.0]
Quantum sensing exploits the strong sensitivity of quantum systems to measure small external signals.
The nitrogen-vacancy center in diamond is one of the most promising platforms for real-world quantum sensing applications.
arXiv Detail & Related papers (2020-10-08T18:24:16Z) - Gravity Probe Spin: Prospects for measuring general-relativistic
precession of intrinsic spin using a ferromagnetic gyroscope [51.51258642763384]
An experimental test at the intersection of quantum physics and general relativity is proposed.
The behavior of intrinsic spin in spacetime is an experimentally open question.
A measurement is possible by using mm-scale ferromagnetic gyroscopes in orbit around the Earth.
arXiv Detail & Related papers (2020-06-16T17:18:44Z) - Spin current generation and control in carbon nanotubes by combining
rotation and magnetic field [78.72753218464803]
We study the quantum dynamics of ballistic electrons in rotating carbon nanotubes in the presence of a uniform magnetic field.
By suitably combining the applied magnetic field intensity and rotation speed, one can tune one of the currents to zero while keeping the other one finite, giving rise to a spin current generator.
arXiv Detail & Related papers (2020-01-20T08:54:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.