Therapy as an NLP Task: Psychologists' Comparison of LLMs and Human Peers in CBT
- URL: http://arxiv.org/abs/2409.02244v2
- Date: Wed, 25 Jun 2025 02:07:35 GMT
- Title: Therapy as an NLP Task: Psychologists' Comparison of LLMs and Human Peers in CBT
- Authors: Zainab Iftikhar, Sean Ransom, Amy Xiao, Nicole Nugent, Jeff Huang,
- Abstract summary: Large language models (LLMs) are being used as adhoc therapists.<n>We compare the session-level behaviors of human counselors with those of an LLM prompted by a team of peer counselors to deliver single-session Cognitive Behavioral Therapy.
- Score: 6.932239020477335
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) are being used as ad-hoc therapists. Research suggests that LLMs outperform human counselors when generating a single, isolated empathetic response; however, their session-level behavior remains understudied. In this study, we compare the session-level behaviors of human counselors with those of an LLM prompted by a team of peer counselors to deliver single-session Cognitive Behavioral Therapy (CBT). Our three-stage, mixed-methods study involved: a) a year-long ethnography of a text-based support platform where seven counselors iteratively refined CBT prompts through self-counseling and weekly focus groups; b) the manual simulation of human counselor sessions with a CBT-prompted LLM, given the full patient dialogue and contextual notes; and c) session evaluations of both human and LLM sessions by three licensed clinical psychologists using CBT competence measures. Our results show a clear trade-off. Human counselors excel at relational strategies -- small talk, self-disclosure, and culturally situated language -- that lead to higher empathy, collaboration, and deeper user reflection. LLM counselors demonstrate higher procedural adherence to CBT techniques but struggle to sustain collaboration, misread cultural cues, and sometimes produce "deceptive empathy," i.e., formulaic warmth that can inflate users' expectations of genuine human care. Taken together, our findings imply that while LLMs might outperform counselors in generating single empathetic responses, their ability to lead sessions is more limited, highlighting that therapy cannot be reduced to a standalone natural language processing (NLP) task. We call for carefully designed human-AI workflows in scalable support: LLMs can scaffold evidence-based techniques, while peers provide relational support. We conclude by mapping concrete design opportunities and ethical guardrails for such hybrid systems.
Related papers
- Reframe Your Life Story: Interactive Narrative Therapist and Innovative Moment Assessment with Large Language Models [92.93521294357058]
Narrative therapy helps individuals transform problematic life stories into empowering alternatives.<n>Current approaches lack realism in specialized psychotherapy and fail to capture therapeutic progression over time.<n>Int (Interactive Narrative Therapist) simulates expert narrative therapists by planning therapeutic stages, guiding reflection levels, and generating contextually appropriate expert-like responses.
arXiv Detail & Related papers (2025-07-27T11:52:09Z) - Ψ-Arena: Interactive Assessment and Optimization of LLM-based Psychological Counselors with Tripartite Feedback [51.26493826461026]
We propose Psi-Arena, an interactive framework for comprehensive assessment and optimization of large language models (LLMs)<n>Arena features realistic arena interactions that simulate real-world counseling through multi-stage dialogues with psychologically profiled NPC clients.<n>Experiments across eight state-of-the-art LLMs show significant performance variations in different real-world scenarios and evaluation perspectives.
arXiv Detail & Related papers (2025-05-06T08:22:51Z) - AutoCBT: An Autonomous Multi-agent Framework for Cognitive Behavioral Therapy in Psychological Counseling [57.054489290192535]
Traditional in-person psychological counseling remains primarily niche, often chosen by individuals with psychological issues.
Online automated counseling offers a potential solution for those hesitant to seek help due to feelings of shame.
arXiv Detail & Related papers (2025-01-16T09:57:12Z) - CBT-Bench: Evaluating Large Language Models on Assisting Cognitive Behavior Therapy [67.23830698947637]
We propose a new benchmark, CBT-BENCH, for the systematic evaluation of cognitive behavioral therapy (CBT) assistance.
We include three levels of tasks in CBT-BENCH: I: Basic CBT knowledge acquisition, with the task of multiple-choice questions; II: Cognitive model understanding, with the tasks of cognitive distortion classification, primary core belief classification, and fine-grained core belief classification; III: Therapeutic response generation, with the task of generating responses to patient speech in CBT therapy sessions.
Experimental results indicate that while LLMs perform well in reciting CBT knowledge, they fall short in complex real-world scenarios
arXiv Detail & Related papers (2024-10-17T04:52:57Z) - Interactive Agents: Simulating Counselor-Client Psychological Counseling via Role-Playing LLM-to-LLM Interactions [12.455050661682051]
We propose a framework that employs two large language models (LLMs) via role-playing for simulating counselor-client interactions.
Our framework involves two LLMs, one acting as a client equipped with a specific and real-life user profile and the other playing the role of an experienced counselor.
arXiv Detail & Related papers (2024-08-28T13:29:59Z) - Are Large Language Models Possible to Conduct Cognitive Behavioral Therapy? [13.0263170692984]
Large language models (LLMs) have been validated, providing new possibilities for psychological assistance therapy.
Many concerns have been raised by mental health experts regarding the use of LLMs for therapy.
Four LLM variants with excellent performance on natural language processing are evaluated.
arXiv Detail & Related papers (2024-07-25T03:01:47Z) - Cactus: Towards Psychological Counseling Conversations using Cognitive Behavioral Theory [24.937025825501998]
We create a multi-turn dialogue dataset that emulates real-life interactions using the goal-oriented and structured approach of Cognitive Behavioral Therapy (CBT)
We benchmark against established psychological criteria used to evaluate real counseling sessions, ensuring alignment with expert evaluations.
Experimental results demonstrate that Camel, a model trained with Cactus, outperforms other models in counseling skills, highlighting its effectiveness and potential as a counseling agent.
arXiv Detail & Related papers (2024-07-03T13:41:31Z) - HealMe: Harnessing Cognitive Reframing in Large Language Models for Psychotherapy [25.908522131646258]
We unveil the Helping and Empowering through Adaptive Language in Mental Enhancement (HealMe) model.
This novel cognitive reframing therapy method effectively addresses deep-rooted negative thoughts and fosters rational, balanced perspectives.
We adopt the first comprehensive and expertly crafted psychological evaluation metrics, specifically designed to rigorously assess the performance of cognitive reframing.
arXiv Detail & Related papers (2024-02-26T09:10:34Z) - PsychoGAT: A Novel Psychological Measurement Paradigm through Interactive Fiction Games with LLM Agents [68.50571379012621]
Psychological measurement is essential for mental health, self-understanding, and personal development.
PsychoGAT (Psychological Game AgenTs) achieves statistically significant excellence in psychometric metrics such as reliability, convergent validity, and discriminant validity.
arXiv Detail & Related papers (2024-02-19T18:00:30Z) - Evaluating the Efficacy of Interactive Language Therapy Based on LLM for
High-Functioning Autistic Adolescent Psychological Counseling [1.1780706927049207]
This study investigates the efficacy of Large Language Models (LLMs) in interactive language therapy for high-functioning autistic adolescents.
LLMs present a novel opportunity to augment traditional psychological counseling methods.
arXiv Detail & Related papers (2023-11-12T07:55:39Z) - Chain of Empathy: Enhancing Empathetic Response of Large Language Models Based on Psychotherapy Models [2.679689033125693]
We present a novel method, the Chain of Empathy (CoE) prompting, that utilizes insights from psychotherapy to induce Large Language Models (LLMs) to reason about human emotional states.
This method is inspired by various psychotherapy approaches including Cognitive Behavioral Therapy (CBT), Dialectical Behavior Therapy (DBT), Person Centered Therapy (PCT), and Reality Therapy (RT)
arXiv Detail & Related papers (2023-11-02T02:21:39Z) - Building Emotional Support Chatbots in the Era of LLMs [64.06811786616471]
We introduce an innovative methodology that synthesizes human insights with the computational prowess of Large Language Models (LLMs)
By utilizing the in-context learning potential of ChatGPT, we generate an ExTensible Emotional Support dialogue dataset, named ExTES.
Following this, we deploy advanced tuning techniques on the LLaMA model, examining the impact of diverse training strategies, ultimately yielding an LLM meticulously optimized for emotional support interactions.
arXiv Detail & Related papers (2023-08-17T10:49:18Z) - Automated Fidelity Assessment for Strategy Training in Inpatient
Rehabilitation using Natural Language Processing [53.096237570992294]
Strategy training is a rehabilitation approach that teaches skills to reduce disability among those with cognitive impairments following a stroke.
Standardized fidelity assessment is used to measure adherence to treatment principles.
We developed a rule-based NLP algorithm, a long-short term memory (LSTM) model, and a bidirectional encoder representation from transformers (BERT) model for this task.
arXiv Detail & Related papers (2022-09-14T15:33:30Z) - Enabling AI and Robotic Coaches for Physical Rehabilitation Therapy:
Iterative Design and Evaluation with Therapists and Post-Stroke Survivors [66.07833535962762]
Artificial intelligence (AI) and robotic coaches promise the improved engagement of patients on rehabilitation exercises through social interaction.
Previous work explored the potential of automatically monitoring exercises for AI and robotic coaches, but deployment remains a challenge.
We present our efforts on eliciting the detailed design specifications on how AI and robotic coaches could interact with and guide patient's exercises.
arXiv Detail & Related papers (2021-06-15T22:06:39Z) - STAN: A stuttering therapy analysis helper [59.37911277681339]
Stuttering is a complex speech disorder identified by repeti-tions, prolongations of sounds, syllables or words and blockswhile speaking.
We introduceSTAN, a system to aid speech therapists in stuttering therapysessions.
arXiv Detail & Related papers (2021-06-15T13:48:12Z) - MET: Multimodal Perception of Engagement for Telehealth [52.54282887530756]
We present MET, a learning-based algorithm for perceiving a human's level of engagement from videos.
We release a new dataset, MEDICA, for mental health patient engagement detection.
arXiv Detail & Related papers (2020-11-17T15:18:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.