論文の概要: ADHD diagnosis based on action characteristics recorded in videos using machine learning
- arxiv url: http://arxiv.org/abs/2409.02274v1
- Date: Tue, 3 Sep 2024 20:16:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-05 21:14:11.214329
- Title: ADHD diagnosis based on action characteristics recorded in videos using machine learning
- Title(参考訳): 機械学習を用いたビデオにおける動作特性に基づくADHD診断
- Authors: Yichun Li, Syes Mohsen Naqvi, Rajesh Nair,
- Abstract要約: 生ビデオ記録の同定と解析によるADHD診断のための新しい行動認識手法を提案する。
本研究の主な貢献は,(1)参加者の注意・過活動・刺激性に着目したテストの設計と実施,2)行動認識ニューラルネットワークに基づく新しい機械学習ADHD診断システムの実装,3)診断結果とADHD行動特性の分析を行うための分類基準の提案である。
- 参考スコア(独自算出の注目度): 0.472457683445805
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Demand for ADHD diagnosis and treatment is increasing significantly and the existing services are unable to meet the demand in a timely manner. In this work, we introduce a novel action recognition method for ADHD diagnosis by identifying and analysing raw video recordings. Our main contributions include 1) designing and implementing a test focusing on the attention and hyperactivity/impulsivity of participants, recorded through three cameras; 2) implementing a novel machine learning ADHD diagnosis system based on action recognition neural networks for the first time; 3) proposing classification criteria to provide diagnosis results and analysis of ADHD action characteristics.
- Abstract(参考訳): ADHDの診断・治療の需要は著しく増加しており、既存のサービスはタイムリーに要求を満たすことができない。
そこで本研究では,生ビデオ記録の同定と解析によるADHD診断のための新しい行動認識手法を提案する。
主な貢献は
1) 3台のカメラを通して記録された参加者の注意・過活動・衝動に着目したテストの設計及び実施
2)行動認識ニューラルネットワークに基づく新しい機械学習ADHD診断システムの実装
3)ADHD行動特性の診断結果と分析を提供するための分類基準を提案する。
関連論文リスト
- Towards Within-Class Variation in Alzheimer's Disease Detection from Spontaneous Speech [60.08015780474457]
アルツハイマー病(AD)の検出は、機械学習の分類モデルを使用する有望な研究領域として浮上している。
我々は、AD検出において、クラス内変異が重要な課題であると考え、ADを持つ個人は認知障害のスペクトルを示す。
本稿では,ソフトターゲット蒸留 (SoTD) とインスタンスレベルの再分散 (InRe) の2つの新しい手法を提案する。
論文 参考訳(メタデータ) (2024-09-22T02:06:05Z) - Action-Based ADHD Diagnosis in Video [2.793781561647737]
ビデオベースのフレームレベルの行動認識ネットワークをADHD診断に初めて導入する。
また、実際の多モードADHDデータセットを記録し、ADHD診断のためのビデオモダリティから3つのアクションクラスを抽出する。
論文 参考訳(メタデータ) (2024-09-03T19:38:23Z) - Refining ADHD diagnosis with EEG: The impact of preprocessing and temporal segmentation on classification accuracy [41.94295877935867]
本研究は,脳波によるADHD診断の信頼性向上における前処理とセグメンテーションの重要性を強調した。
後の脳波セグメントで訓練されたモデルは、ADHDを識別する際の認知疲労の潜在的な役割を示唆し、かなり高い精度を実現した。
論文 参考訳(メタデータ) (2024-07-11T09:07:22Z) - Video-Based Autism Detection with Deep Learning [0.0]
感覚刺激に反応する子供の映像クリップを解析する深層学習モデルを開発した。
以上の結果から,本モデルは子どもの運動における重要な違いを効果的に一般化し,理解していることが明らかとなった。
論文 参考訳(メタデータ) (2024-02-26T17:45:00Z) - Exploiting the Brain's Network Structure for Automatic Identification of
ADHD Subjects [70.37277191524755]
我々は脳を機能的ネットワークとしてモデル化できることを示し,ADHD被験者と制御対象とではネットワークの特定の特性が異なることを示した。
776名の被験者で分類器を訓練し,ADHD-200チャレンジのために神経局が提供する171名の被験者を対象に試験を行った。
論文 参考訳(メタデータ) (2023-06-15T16:22:57Z) - Skeleton-based action analysis for ADHD diagnosis [10.393047508477173]
骨格に基づく行動認識フレームワークを用いた新しいADHD診断システムを提案する。
従来の手法と比較して,提案手法はコスト効率と大幅な性能向上を示す。
本手法はマススクリーニングに広く応用されている。
論文 参考訳(メタデータ) (2023-04-14T13:07:27Z) - Leveraging Pretrained Representations with Task-related Keywords for
Alzheimer's Disease Detection [69.53626024091076]
アルツハイマー病(AD)は高齢者に特に顕著である。
事前学習モデルの最近の進歩は、AD検出モデリングを低レベル特徴から高レベル表現にシフトさせる動機付けとなっている。
本稿では,高レベルの音響・言語的特徴から,より優れたAD関連手がかりを抽出する,いくつかの効率的な手法を提案する。
論文 参考訳(メタデータ) (2023-03-14T16:03:28Z) - Detection of ADHD based on Eye Movements during Natural Viewing [3.1890959219836574]
ADHDは神経発達障害であり、臨床専門医が診断する必要がある。
我々は、関連するタスクに対して事前学習を行う、エンドツーエンドのディープラーニングベースのシーケンスモデルを開発する。
この手法は実際にADHDを検出し、関連するベースラインを上回ります。
論文 参考訳(メタデータ) (2022-07-04T12:56:04Z) - SpineOne: A One-Stage Detection Framework for Degenerative Discs and
Vertebrae [54.751251046196494]
SpineOneと呼ばれる一段階検出フレームワークを提案し、MRIスライスから変性椎骨と椎骨を同時に局在化・分類する。
1)キーポイントの局所化と分類を促進するためのキーポイント・ヒートマップの新しい設計、2)ディスクと脊椎の表現をよりよく区別するためのアテンション・モジュールの使用、3)後期訓練段階における複数の学習目標を関連付けるための新しい勾配誘導客観的アソシエーション機構。
論文 参考訳(メタデータ) (2021-10-28T12:59:06Z) - Non-contact Pain Recognition from Video Sequences with Remote
Physiological Measurements Prediction [53.03469655641418]
痛み認識のための非接触方式で外観変化と生理的手がかりの両方を符号化する新しいマルチタスク学習フレームワークを提案する。
我々は、一般に利用可能な痛みデータベース上で、非接触痛認識の最先端性能を確立する。
論文 参考訳(メタデータ) (2021-05-18T20:47:45Z) - Inheritance-guided Hierarchical Assignment for Clinical Automatic
Diagnosis [50.15205065710629]
臨床診断は、臨床ノートに基づいて患者に診断符号を割り当てることを目的としており、臨床意思決定において重要な役割を担っている。
本稿では,臨床自動診断のための継承誘導階層と共起グラフの伝播を組み合わせた新しい枠組みを提案する。
論文 参考訳(メタデータ) (2021-01-27T13:16:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。