YoloTag: Vision-based Robust UAV Navigation with Fiducial Markers
- URL: http://arxiv.org/abs/2409.02334v2
- Date: Wed, 9 Oct 2024 21:08:30 GMT
- Title: YoloTag: Vision-based Robust UAV Navigation with Fiducial Markers
- Authors: Sourav Raxit, Simant Bahadur Singh, Abdullah Al Redwan Newaz,
- Abstract summary: We propose YoloTag, a real-time fiducial marker-based localization system.
YoloTag uses a lightweight YOLO v8 object detector to accurately detect fiducial markers in images.
The detected markers are then used by an efficient perspective-n-point algorithm to estimate UAV states.
- Score: 2.7855886538423182
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: By harnessing fiducial markers as visual landmarks in the environment, Unmanned Aerial Vehicles (UAVs) can rapidly build precise maps and navigate spaces safely and efficiently, unlocking their potential for fluent collaboration and coexistence with humans. Existing fiducial marker methods rely on handcrafted feature extraction, which sacrifices accuracy. On the other hand, deep learning pipelines for marker detection fail to meet real-time runtime constraints crucial for navigation applications. In this work, we propose YoloTag -a real-time fiducial marker-based localization system. YoloTag uses a lightweight YOLO v8 object detector to accurately detect fiducial markers in images while meeting the runtime constraints needed for navigation. The detected markers are then used by an efficient perspective-n-point algorithm to estimate UAV states. However, this localization system introduces noise, causing instability in trajectory tracking. To suppress noise, we design a higher-order Butterworth filter that effectively eliminates noise through frequency domain analysis. We evaluate our algorithm through real-robot experiments in an indoor environment, comparing the trajectory tracking performance of our method against other approaches in terms of several distance metrics.
Related papers
- SFTrack: A Robust Scale and Motion Adaptive Algorithm for Tracking Small and Fast Moving Objects [2.9803250365852443]
This paper addresses the problem of multi-object tracking in Unmanned Aerial Vehicle (UAV) footage.
It plays a critical role in various UAV applications, including traffic monitoring systems and real-time suspect tracking by the police.
We propose a new tracking strategy, which initiates the tracking of target objects from low-confidence detections.
arXiv Detail & Related papers (2024-10-26T05:09:20Z) - RobMOT: Robust 3D Multi-Object Tracking by Observational Noise and State Estimation Drift Mitigation on LiDAR PointCloud [11.111388829965103]
This work addresses limitations in recent 3D tracking-by-detection methods.
We propose a novel online track validity mechanism that temporally distinguishes between legitimate and ghost tracks.
We also introduce a refinement to the Kalman filter that enhances noise mitigation in trajectory drift, leading to more robust state estimation for occluded objects.
arXiv Detail & Related papers (2024-05-19T12:49:21Z) - Landmark-based Localization using Stereo Vision and Deep Learning in
GPS-Denied Battlefield Environment [1.19658449368018]
This paper proposes a novel framework for localization in non-GPS battlefield environments using only the passive camera sensors.
The proposed method utilizes a customcalibrated stereo vision camera for distance estimation and the YOLOv8s model, which is trained and fine-tuned with our real-world dataset for landmark recognition.
Experimental results demonstrate that our proposed framework performs better than existing anchorbased DV-Hop algorithms and competes with the most efficient vision-based algorithms in terms of localization error (RMSE)
arXiv Detail & Related papers (2024-02-19T21:20:56Z) - Echoes Beyond Points: Unleashing the Power of Raw Radar Data in
Multi-modality Fusion [74.84019379368807]
We propose a novel method named EchoFusion to skip the existing radar signal processing pipeline.
Specifically, we first generate the Bird's Eye View (BEV) queries and then take corresponding spectrum features from radar to fuse with other sensors.
arXiv Detail & Related papers (2023-07-31T09:53:50Z) - SalienDet: A Saliency-based Feature Enhancement Algorithm for Object
Detection for Autonomous Driving [160.57870373052577]
We propose a saliency-based OD algorithm (SalienDet) to detect unknown objects.
Our SalienDet utilizes a saliency-based algorithm to enhance image features for object proposal generation.
We design a dataset relabeling approach to differentiate the unknown objects from all objects in training sample set to achieve Open-World Detection.
arXiv Detail & Related papers (2023-05-11T16:19:44Z) - Real-time Multi-Object Tracking Based on Bi-directional Matching [0.0]
This study offers a bi-directional matching algorithm for multi-object tracking.
A stranded area is used in the matching algorithm to temporarily store the objects that fail to be tracked.
In the MOT17 challenge, the proposed algorithm achieves 63.4% MOTA, 55.3% IDF1, and 20.1 FPS tracking speed.
arXiv Detail & Related papers (2023-03-15T08:38:08Z) - A Multi-UAV System for Exploration and Target Finding in Cluttered and
GPS-Denied Environments [68.31522961125589]
We propose a framework for a team of UAVs to cooperatively explore and find a target in complex GPS-denied environments with obstacles.
The team of UAVs autonomously navigates, explores, detects, and finds the target in a cluttered environment with a known map.
Results indicate that the proposed multi-UAV system has improvements in terms of time-cost, the proportion of search area surveyed, as well as successful rates for search and rescue missions.
arXiv Detail & Related papers (2021-07-19T12:54:04Z) - Distractor-Aware Fast Tracking via Dynamic Convolutions and MOT
Philosophy [63.91005999481061]
A practical long-term tracker typically contains three key properties, i.e. an efficient model design, an effective global re-detection strategy and a robust distractor awareness mechanism.
We propose a two-task tracking frame work (named DMTrack) to achieve distractor-aware fast tracking via Dynamic convolutions (d-convs) and Multiple object tracking (MOT) philosophy.
Our tracker achieves state-of-the-art performance on the LaSOT, OxUvA, TLP, VOT2018LT and VOT 2019LT benchmarks and runs in real-time (3x faster
arXiv Detail & Related papers (2021-04-25T00:59:53Z) - Tracking-by-Counting: Using Network Flows on Crowd Density Maps for
Tracking Multiple Targets [96.98888948518815]
State-of-the-art multi-object tracking(MOT) methods follow the tracking-by-detection paradigm.
We propose a new MOT paradigm, tracking-by-counting, tailored for crowded scenes.
arXiv Detail & Related papers (2020-07-18T19:51:53Z) - Reinforcement Learning for UAV Autonomous Navigation, Mapping and Target
Detection [36.79380276028116]
We study a joint detection, mapping and navigation problem for a single unmanned aerial vehicle (UAV) equipped with a low complexity radar and flying in an unknown environment.
The goal is to optimize its trajectory with the purpose of maximizing the mapping accuracy and to avoid areas where measurements might not be sufficiently informative from the perspective of a target detection.
arXiv Detail & Related papers (2020-05-05T20:39:18Z) - Tracking Road Users using Constraint Programming [79.32806233778511]
We present a constraint programming (CP) approach for the data association phase found in the tracking-by-detection paradigm of the multiple object tracking (MOT) problem.
Our proposed method was tested on a motorized vehicles tracking dataset and produces results that outperform the top methods of the UA-DETRAC benchmark.
arXiv Detail & Related papers (2020-03-10T00:04:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.