UAVDB: Point-Guided Masks for UAV Detection and Segmentation
- URL: http://arxiv.org/abs/2409.06490v6
- Date: Wed, 16 Jul 2025 07:12:33 GMT
- Title: UAVDB: Point-Guided Masks for UAV Detection and Segmentation
- Authors: Yu-Hsi Chen,
- Abstract summary: We present UAVDB, a new benchmark dataset for UAV detection and segmentation.<n>It is built upon a point-guided weak supervision pipeline.<n>UAVDB captures UAVs at diverse scales, from visible objects to near-single-pixel instances.
- Score: 0.03464344220266879
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The widespread deployment of Unmanned Aerial Vehicles (UAVs) in surveillance, security, and airspace monitoring demands accurate and scalable detection solutions. However, progress is hindered by the lack of large-scale, high-resolution datasets with precise and cost-effective annotations. We present UAVDB, a new benchmark dataset for UAV detection and segmentation, built upon a point-guided weak supervision pipeline. As its foundation, UAVDB leverages trajectory point annotations and RGB video frames from the multi-view drone tracking dataset, captured by fixed-camera setups. We introduce an efficient annotation method, Patch Intensity Convergence (PIC), which generates high-fidelity bounding boxes directly from these trajectory points, eliminating manual labeling while maintaining accurate spatial localization. We further derive instance segmentation masks from these bounding boxes using the second version of the Segment Anything Model (SAM2), enabling rich multi-task annotations with minimal supervision. UAVDB captures UAVs at diverse scales, from visible objects to near-single-pixel instances, under challenging environmental conditions. Particularly, PIC is lightweight and readily pluggable into other point-guided scenarios, making it easy to scale up dataset generation across domains. We quantitatively compare PIC against existing annotation techniques, demonstrating superior Intersection over Union (IoU) accuracy and annotation efficiency. Finally, we benchmark several state-of-the-art (SOTA) YOLO-series detectors on UAVDB, establishing strong baselines for future research. The source code is available at https://github.com/wish44165/UAVDB .
Related papers
- Tracking the Unstable: Appearance-Guided Motion Modeling for Robust Multi-Object Tracking in UAV-Captured Videos [58.156141601478794]
Multi-object tracking (UAVT) aims to track multiple objects while maintaining consistent identities across frames of a given video.<n>Existing methods typically model motion cues and appearance separately, overlooking their interplay and resulting in suboptimal tracking performance.<n>We propose AMOT, which exploits appearance and motion cues through two key components: an Appearance-Motion Consistency (AMC) matrix and a Motion-aware Track Continuation (MTC) module.
arXiv Detail & Related papers (2025-08-03T12:06:47Z) - More Clear, More Flexible, More Precise: A Comprehensive Oriented Object Detection benchmark for UAV [58.89234732689013]
CODrone is a comprehensive oriented object detection dataset for UAVs that accurately reflects real-world conditions.
It also serves as a new benchmark designed to align with downstream task requirements.
We conduct a series of experiments based on 22 classical or SOTA methods to rigorously evaluate CODrone.
arXiv Detail & Related papers (2025-04-28T17:56:02Z) - UAV-DETR: Efficient End-to-End Object Detection for Unmanned Aerial Vehicle Imagery [14.599037804047724]
Unmanned aerial vehicle object detection (UAV-OD) has been widely used in various scenarios.
Most existing UAV-OD algorithms rely on manually designed components, which require extensive tuning.
This paper proposes an efficient detection transformer (DETR) framework tailored for UAV imagery.
arXiv Detail & Related papers (2025-01-03T15:11:14Z) - Unsupervised UAV 3D Trajectories Estimation with Sparse Point Clouds [18.48877348628721]
This paper presents a cost-effective, unsupervised UAV detection method using spatial-temporal sequence processing.
Our solution placed 4th in the CVPR 2024 UG2+ Challenge, demonstrating its practical effectiveness.
We plan to open-source all designs, code, and sample data for the research community.com/lianghanfang/UnLiDAR-UAV-Est.
arXiv Detail & Related papers (2024-12-17T09:30:31Z) - SFTrack: A Robust Scale and Motion Adaptive Algorithm for Tracking Small and Fast Moving Objects [2.9803250365852443]
This paper addresses the problem of multi-object tracking in Unmanned Aerial Vehicle (UAV) footage.
It plays a critical role in various UAV applications, including traffic monitoring systems and real-time suspect tracking by the police.
We propose a new tracking strategy, which initiates the tracking of target objects from low-confidence detections.
arXiv Detail & Related papers (2024-10-26T05:09:20Z) - SOOD++: Leveraging Unlabeled Data to Boost Oriented Object Detection [59.868772767818975]
We propose a simple yet effective Semi-supervised Oriented Object Detection method termed SOOD++.
Specifically, we observe that objects from aerial images are usually arbitrary orientations, small scales, and aggregation.
Extensive experiments conducted on various multi-oriented object datasets under various labeled settings demonstrate the effectiveness of our method.
arXiv Detail & Related papers (2024-07-01T07:03:51Z) - Multi-Agent Reinforcement Learning for Offloading Cellular Communications with Cooperating UAVs [21.195346908715972]
Unmanned aerial vehicles present an alternative means to offload data traffic from terrestrial BSs.
This paper presents a novel approach to efficiently serve multiple UAVs for data offloading from terrestrial BSs.
arXiv Detail & Related papers (2024-02-05T12:36:08Z) - Evidential Detection and Tracking Collaboration: New Problem, Benchmark
and Algorithm for Robust Anti-UAV System [56.51247807483176]
Unmanned Aerial Vehicles (UAVs) have been widely used in many areas, including transportation, surveillance, and military.
Previous works have simplified such an anti-UAV task as a tracking problem, where prior information of UAVs is always provided.
In this paper, we first formulate a new and practical anti-UAV problem featuring the UAVs perception in complex scenes without prior UAVs information.
arXiv Detail & Related papers (2023-06-27T19:30:23Z) - Integrated Sensing, Computation, and Communication for UAV-assisted
Federated Edge Learning [52.7230652428711]
Federated edge learning (FEEL) enables privacy-preserving model training through periodic communication between edge devices and the server.
Unmanned Aerial Vehicle (UAV)mounted edge devices are particularly advantageous for FEEL due to their flexibility and mobility in efficient data collection.
arXiv Detail & Related papers (2023-06-05T16:01:33Z) - Investigation of UAV Detection in Images with Complex Backgrounds and
Rainy Artifacts [20.20609511526255]
Vision-based object detection methods have been developed for UAV detection.
UAV detection in images with complex backgrounds and weather artifacts like rain has yet to be reasonably studied.
This work also focuses on benchmarking state-of-the-art object detection models.
arXiv Detail & Related papers (2023-05-25T19:54:33Z) - SOOD: Towards Semi-Supervised Oriented Object Detection [57.05141794402972]
This paper proposes a novel Semi-supervised Oriented Object Detection model, termed SOOD, built upon the mainstream pseudo-labeling framework.
Our experiments show that when trained with the two proposed losses, SOOD surpasses the state-of-the-art SSOD methods under various settings on the DOTA-v1.5 benchmark.
arXiv Detail & Related papers (2023-04-10T11:10:42Z) - Learning to Compress Unmanned Aerial Vehicle (UAV) Captured Video:
Benchmark and Analysis [54.07535860237662]
We propose a novel task for learned UAV video coding and construct a comprehensive and systematic benchmark for such a task.
It is expected that the benchmark will accelerate the research and development in video coding on drone platforms.
arXiv Detail & Related papers (2023-01-15T15:18:02Z) - Vision-based Anti-UAV Detection and Tracking [18.307952561941942]
Unmanned aerial vehicles (UAV) have been widely used in various fields, and their invasion of security and privacy has aroused social concern.
We propose a visible light mode dataset called Dalian University of Technology Anti-UAV dataset, DUT Anti-UAV.
It contains a detection dataset with a total of 10,000 images and a tracking dataset with 20 videos that include short-term and long-term sequences.
arXiv Detail & Related papers (2022-05-22T15:21:45Z) - Vision-Based UAV Self-Positioning in Low-Altitude Urban Environments [20.69412701553767]
Unmanned Aerial Vehicles (UAVs) rely on satellite systems for stable positioning.
In such situations, vision-based techniques can serve as an alternative, ensuring the self-positioning capability of UAVs.
This paper presents a new dataset, DenseUAV, which is the first publicly available dataset designed for the UAV self-positioning task.
arXiv Detail & Related papers (2022-01-23T07:18:55Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
We propose a novel anomaly detection model called Discriminatory Auto-Encoder (DAE)
It uses the baseline of a regular LSTM-based auto-encoder but with several decoders, each getting data of a specific flight phase.
Results show that the DAE achieves better results in both accuracy and speed of detection.
arXiv Detail & Related papers (2021-09-08T14:07:55Z) - A Multi-UAV System for Exploration and Target Finding in Cluttered and
GPS-Denied Environments [68.31522961125589]
We propose a framework for a team of UAVs to cooperatively explore and find a target in complex GPS-denied environments with obstacles.
The team of UAVs autonomously navigates, explores, detects, and finds the target in a cluttered environment with a known map.
Results indicate that the proposed multi-UAV system has improvements in terms of time-cost, the proportion of search area surveyed, as well as successful rates for search and rescue missions.
arXiv Detail & Related papers (2021-07-19T12:54:04Z) - 3D UAV Trajectory and Data Collection Optimisation via Deep
Reinforcement Learning [75.78929539923749]
Unmanned aerial vehicles (UAVs) are now beginning to be deployed for enhancing the network performance and coverage in wireless communication.
It is challenging to obtain an optimal resource allocation scheme for the UAV-assisted Internet of Things (IoT)
In this paper, we design a new UAV-assisted IoT systems relying on the shortest flight path of the UAVs while maximising the amount of data collected from IoT devices.
arXiv Detail & Related papers (2021-06-06T14:08:41Z) - UAV-ReID: A Benchmark on Unmanned Aerial Vehicle Re-identification [21.48667873335246]
Recent development in deep learning allows vision-based counter-UAV systems to detect and track UAVs with a single camera.
The coverage of a single camera is limited, necessitating the need for multicamera configurations to match UAVs across cameras.
We propose the first new UAV re-identification data set, UAV-reID, that facilitates the development of machine learning solutions in this emerging area.
arXiv Detail & Related papers (2021-04-13T14:13:09Z) - Anti-UAV: A Large Multi-Modal Benchmark for UAV Tracking [59.06167734555191]
Unmanned Aerial Vehicle (UAV) offers lots of applications in both commerce and recreation.
We consider the task of tracking UAVs, providing rich information such as location and trajectory.
We propose a dataset, Anti-UAV, with more than 300 video pairs containing over 580k manually annotated bounding boxes.
arXiv Detail & Related papers (2021-01-21T07:00:15Z) - Perceiving Traffic from Aerial Images [86.994032967469]
We propose an object detection method called Butterfly Detector that is tailored to detect objects in aerial images.
We evaluate our Butterfly Detector on two publicly available UAV datasets (UAVDT and VisDrone 2019) and show that it outperforms previous state-of-the-art methods while remaining real-time.
arXiv Detail & Related papers (2020-09-16T11:37:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.