論文の概要: Practical techniques for high-precision measurements on near-term quantum hardware and applications in molecular energy estimation
- arxiv url: http://arxiv.org/abs/2409.02575v2
- Date: Thu, 17 Jul 2025 09:15:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-18 20:10:24.17688
- Title: Practical techniques for high-precision measurements on near-term quantum hardware and applications in molecular energy estimation
- Title(参考訳): 短期量子ハードウェアの高精度測定技術と分子エネルギー推定への応用
- Authors: Keijo Korhonen, Hetta Vappula, Adam Glos, Marco Cattaneo, Zoltán Zimborás, Elsi-Mari Borrelli, Matteo A. C. Rossi, Guillermo García-Pérez, Daniel Cavalcanti,
- Abstract要約: 本稿では, 量子化学に必須の精度に到達する手法を, 重要なオーバーヘッドやノイズ源に対処することによって実装する。
IBM Eagle r3上のHartree-Fock状態におけるBODIPY分子の分子エネルギー推定によるこれらの手法の実証を行った。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Achieving high-precision measurements on near-term quantum devices is critical for advancing quantum computing applications. Quantum computers suffer from high readout errors, making quantum simulations with high accuracy requirements particularly challenging. This paper implements practical techniques to reach accuracies essential for quantum chemistry by addressing key overheads and noise sources. Specifically, we leverage locally biased random measurements for reducing shot overhead, repeated settings with parallel quantum detector tomography for reducing circuit overhead and mitigating readout errors, and blended scheduling for mitigating time-dependent noise. We demonstrate these techniques via molecular energy estimation of the BODIPY molecule on a Hartree-Fock state on an IBM Eagle r3, obtaining a reduction in measurement errors by an order of magnitude from 1-5% to 0.16%. These strategies pave the way for more reliable quantum computations, particularly for applications requiring precise molecular energy calculations.
- Abstract(参考訳): 近い将来の量子デバイス上での高精度な測定は、量子コンピューティングアプリケーションの進歩に不可欠である。
量子コンピュータは高い読み出し誤差に悩まされ、高い精度の要求を伴う量子シミュレーションは特に困難である。
本稿では,重要なオーバーヘッドやノイズ源に対処することで,量子化学に必要な精度に到達するための実践的手法を実装した。
具体的には、局所偏差ランダム測定を利用してショットオーバヘッドを低減し、並列量子検出器トモグラフィーで繰り返し設定して回路オーバヘッドを低減し、リードアウトエラーを軽減し、時間依存ノイズを緩和するためのブレンドスケジューリングを行う。
IBM Eagle r3上のHartree-Fock状態におけるBODIPY分子の分子エネルギー推定によるこれらの手法の実証を行った。
これらの戦略は、特に正確な分子エネルギー計算を必要とする応用のために、より信頼性の高い量子計算の道を開く。
関連論文リスト
- Limitations of Quantum Hardware for Molecular Energy Estimation Using VQE [0.0]
変分量子固有解法(VQEs)は、量子化学における電子構造問題を解くための最も有望な量子アルゴリズムの一つである。
本研究では,現在の量子ハードウェアに実装されているVQEアルゴリズムの性能と限界について検討する。
論文 参考訳(メタデータ) (2025-06-04T14:19:18Z) - Mitigating shot noise in local overlapping quantum tomography with semidefinite programming [0.0]
還元密度行列(Reduced density matrices, RDM)は、量子情報処理の基本である。
本稿では,RDMの制約を再強化することにより,ショットノイズを軽減する手法を提案する。
アルゴリズムによる冷却手法に組み込むことで,本手法の有効性と有効性を示す。
論文 参考訳(メタデータ) (2025-01-30T18:17:13Z) - Harnessing quantum back-action for time-series processing [0.0]
量子機械学習プロトコルに弱い測定を組み込むことは、実行時間のスケーリングと全体的なパフォーマンスの両方に利点をもたらすことを示す。
この研究は、量子貯水池コンピューティングにおける弱い測定ベースのプロトコルの実装を促進するための包括的で実用的なレシピを提供する。
論文 参考訳(メタデータ) (2024-11-06T15:15:04Z) - Experimental demonstration of Robust Amplitude Estimation on near-term quantum devices for chemistry applications [36.136619420474766]
本研究では,IBM量子デバイス上でのロバスト振幅推定(RAE)のハードウェア実装について検討する。
一量子および二量子ハミルトニアン系に対する量子化学への応用を実証する。
論文 参考訳(メタデータ) (2024-10-01T13:42:01Z) - Lindblad-like quantum tomography for non-Markovian quantum dynamical maps [46.350147604946095]
本稿では,Lindblad-like quantum tomography (L$ell$QT) を量子情報プロセッサにおける時間相関ノイズの量子的特徴付け手法として紹介する。
単一量子ビットの強調力学について、L$ell$QT を詳細に論じ、量子進化の複数のスナップショットを可能性関数に含めることの重要性を正確に理解することができる。
論文 参考訳(メタデータ) (2024-03-28T19:29:12Z) - Precision ground-state energy calculation for the water molecule on a
superconducting quantum processor [0.0]
大規模分子系の特性の正確な計算は古典的には実現不可能であり、量子コンピュータが古典的デバイスに対して優位性を示すことを期待する応用の1つである。
本稿では,量子計算モーメント (QCM) 法と様々なノイズ緩和法を組み合わせた水分子 (H$O) の8 qubit/spin-orbital表現に適用する。
4励振試験状態(回路深度25,22CNOTs)の変動に対するノイズ安定改善を行い, 地中エネルギーは1.4pm1.2$ m以内と計算した。
論文 参考訳(メタデータ) (2023-11-05T01:05:58Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
本稿では,限られた情報伝達と保守的絡み合い生成を含む短期分散量子コンピューティングを提案する。
我々はこれらの概念に基づいて、変分量子アルゴリズムの断片化事前学習のための近似回路切断手法を作成する。
論文 参考訳(メタデータ) (2023-09-11T18:00:00Z) - Statistical phase estimation and error mitigation on a superconducting
quantum processor [2.624902795082451]
リゲッティの超伝導プロセッサの統計的位相推定を実践する。
ゼロノイズ外挿やビットフリップ平均化による読み出し誤差緩和を含む誤り軽減戦略を取り入れた。
我々の研究は、統計的位相推定が、特にコヒーレントな誤差を緩和した後、自然にノイズに耐性があることを実証している。
論文 参考訳(メタデータ) (2023-04-11T10:40:22Z) - Guaranteed efficient energy estimation of quantum many-body Hamiltonians
using ShadowGrouping [55.47824411563162]
量子多体系のエネルギーの推定は、様々な研究分野におけるパラダイム的な課題である。
本研究の目的は,全測定予算から最も高い証明可能な精度が得られる単一キュービット計測による最適戦略を見出すことである。
私たちはShadowGroupingと呼ばれる実用的で効率的な見積もり戦略を開発します。
論文 参考訳(メタデータ) (2023-01-09T14:41:07Z) - Potential and limitations of quantum extreme learning machines [55.41644538483948]
本稿では,QRCとQELMをモデル化するフレームワークを提案する。
我々の分析は、QELMとQRCの両方の機能と限界をより深く理解するための道を開いた。
論文 参考訳(メタデータ) (2022-10-03T09:32:28Z) - Hardware-efficient entangled measurements for variational quantum
algorithms [0.0]
変分アルゴリズムは、ノイズの多い中間スケール量子(NISQ)デバイスを使用して、実用的な問題を解決するために使用できる。
ハードウェア効率のよいエンタングルド計測(HEEM)を提案する。
この戦略により,NISQデバイスにおける分子ハミルトニアンの回路数を削減することにより,分子ハミルトニアンの評価が向上することを示す。
論文 参考訳(メタデータ) (2022-02-14T19:00:16Z) - Measuring NISQ Gate-Based Qubit Stability Using a 1+1 Field Theory and
Cycle Benchmarking [50.8020641352841]
量子ハードウェアプラットフォーム上でのコヒーレントエラーを, サンプルユーザアプリケーションとして, 横フィールドIsing Model Hamiltonianを用いて検討した。
プロセッサ上の物理位置の異なる量子ビット群に対する、日中および日中キュービット校正ドリフトと量子回路配置の影響を同定する。
また,これらの測定値が,これらの種類の誤差をよりよく理解し,量子計算の正確性を評価するための取り組みを改善する方法についても論じる。
論文 参考訳(メタデータ) (2022-01-08T23:12:55Z) - Numerical Simulations of Noisy Quantum Circuits for Computational
Chemistry [51.827942608832025]
短期量子コンピュータは、小さな分子の基底状態特性を計算することができる。
計算アンサッツの構造と装置ノイズによる誤差が計算にどのように影響するかを示す。
論文 参考訳(メタデータ) (2021-12-31T16:33:10Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
本稿では,量子状態の知識を必要とせず,量子回路の可換性を検証する回路指向対称性検証を提案する。
特に、従来の量子領域形式を回路指向安定化器に一般化するフーリエ時間安定化器(STS)手法を提案する。
論文 参考訳(メタデータ) (2021-12-27T21:15:35Z) - Analytical and experimental study of center line miscalibrations in M\o
lmer-S\o rensen gates [51.93099889384597]
モルマー・ソレンセンエンタングゲートの誤校正パラメータの系統的摂動展開について検討した。
我々はゲート進化演算子を計算し、関連する鍵特性を得る。
我々は、捕捉されたイオン量子プロセッサにおける測定値に対して、モデルからの予測をベンチマークすることで検証する。
論文 参考訳(メタデータ) (2021-12-10T10:56:16Z) - Chemistry beyond the Hartree-Fock limit via quantum computed moments [0.0]
我々は水素鎖分子系に対する量子計算モーメント(QCM)アプローチをH$_6$まで実装する。
その結果,QCM法の誤差抑制能力,特に後処理誤差軽減と組み合わせた場合の強い証拠が得られた。
ハミルトニアンおよび古典的な前処理ステップのより効率的な表現に重点を置いていると、より大規模なシステムを短期量子プロセッサ上で解ける可能性がある。
論文 参考訳(メタデータ) (2021-11-15T23:04:23Z) - Characterizing quantum instruments: from non-demolition measurements to
quantum error correction [48.43720700248091]
量子情報処理では、量子演算はしばしば古典的なデータをもたらす測定とともに処理される。
非単位の動的プロセスは、一般的な量子チャネルの記述が時間進化を記述するのに失敗するシステムで起こりうる。
量子測定は古典的な出力と測定後の量子状態の両方を計測するいわゆる量子機器によって正しく扱われる。
論文 参考訳(メタデータ) (2021-10-13T18:00:13Z) - Hardware-Efficient, Fault-Tolerant Quantum Computation with Rydberg
Atoms [55.41644538483948]
我々は中性原子量子コンピュータにおいてエラー源の完全な特徴付けを行う。
計算部分空間外の状態への原子量子ビットの崩壊に伴う最も重要なエラーに対処する,新しい,明らかに効率的な手法を開発した。
我々のプロトコルは、アルカリ原子とアルカリ原子の両方にエンコードされた量子ビットを持つ最先端の中性原子プラットフォームを用いて、近い将来に実装できる。
論文 参考訳(メタデータ) (2021-05-27T23:29:53Z) - Learning to Measure: Adaptive Informationally Complete Generalized
Measurements for Quantum Algorithms [0.0]
本稿では,情報完全正の演算子値測定(POVM)をオンザフライで最適化するアルゴリズムを提案する。
分子ハミルトニアンの基底状態エネルギーの計算における変分量子固有解器の効率を改善することにより、その利点を示す。
さらに、他の量の関心を推測するために測定データを再利用できるため、アプローチの情報完全性は極めて有利である。
論文 参考訳(メタデータ) (2021-04-01T15:49:05Z) - Minimizing estimation runtime on noisy quantum computers [0.0]
ベイズ推論の実行には、ELF(Engineered chance function)が用いられる。
物理ハードウェアがノイズの多い量子コンピュータの仕組みから遷移するにつれて,ELF形式がサンプリングにおける情報ゲイン率をいかに向上させるかを示す。
この技術は、化学、材料、ファイナンスなどを含む多くの量子アルゴリズムの中心的なコンポーネントを高速化する。
論文 参考訳(メタデータ) (2020-06-16T17:46:18Z) - Scalable quantum processor noise characterization [57.57666052437813]
累積展開に基づく多ビットデバイスに対する近似的MCMを構築するためのスケーラブルな方法を提案する。
また,本手法は,様々な種類の相関誤差を特徴付けるためにも利用できる。
論文 参考訳(メタデータ) (2020-06-02T17:39:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。