論文の概要: GoT-CQA: Graph-of-Thought Guided Compositional Reasoning for Chart Question Answering
- arxiv url: http://arxiv.org/abs/2409.02611v1
- Date: Wed, 4 Sep 2024 10:56:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-05 19:10:42.889067
- Title: GoT-CQA: Graph-of-Thought Guided Compositional Reasoning for Chart Question Answering
- Title(参考訳): GoT-CQA:グラフ・オブ・サード・ガイドによるチャート質問回答のための合成推論
- Authors: Lingling Zhang, Muye Huang, QianYing Wang, Yaxian Wang, Wenjun Wu, Jun Liu,
- Abstract要約: CQA(Chart Question Answering)は、ビジュアルチャートの内容に基づいて質問に答えることを目的としている。
本稿では,GoT-CQAと呼ばれる新しいグラフ・オブ・ソート(GoT)による合成推論モデルを提案する。
GoT-CQAは、特に複雑な人間記述や推論の質問において、優れたパフォーマンスを達成する。
- 参考スコア(独自算出の注目度): 12.485921065840294
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Chart Question Answering (CQA) aims at answering questions based on the visual chart content, which plays an important role in chart sumarization, business data analysis, and data report generation. CQA is a challenging multi-modal task because of the strong context dependence and complex reasoning requirement. The former refers to answering this question strictly based on the analysis of the visual content or internal data of the given chart, while the latter emphasizes the various logical and numerical reasoning involved in answer prediction process. In this paper, we pay more attention on the complex reasoning in CQA task, and propose a novel Graph-of-Thought (GoT) guided compositional reasoning model called GoT-CQA to overcome this problem. At first, we transform the chart-oriented question into a directed acyclic GoT composed of multiple operator nodes, including localization, numerical and logical operator. It intuitively reflects the human brain's solution process to this question. After that, we design an efficient auto-compositional reasoning framework guided by the GoT, to excute the multi-step reasoning operations in various types of questions. Comprehensive experiments on ChartQA and PlotQA-D datasets show that GoT-CQA achieves outstanding performance, especially in complex human-written and reasoning questions, comparing with the latest popular baselines.
- Abstract(参考訳): CQA(Chart Question Answering)は、チャートの要約、ビジネスデータ分析、データレポート生成において重要な役割を果たすビジュアルチャートの内容に基づいて、質問に答えることを目的としている。
CQAは、強いコンテキスト依存と複雑な推論要求のため、困難なマルチモーダルタスクである。
前者は、与えられたチャートの視覚的内容や内部データの分析に基づいて、厳密に答えることであり、後者は、回答予測プロセスに関わる様々な論理的および数値的推論を強調する。
本稿では,CQAタスクにおける複雑な推論にもっと注意を払うとともに,この問題を解決するために,新しいグラフ・オブ・ソート(GoT)ガイド付き合成推論モデルGoT-CQAを提案する。
まず、グラフ指向の質問を、局所化、数値化、論理演算子を含む複数の演算子ノードからなる有向非巡回GoTに変換する。
これは人間の脳の解法を直感的に反映している。
その後、GoTが指導する効率的な自動構成推論フレームワークを設計し、様々な質問の多段階推論操作を抽出する。
ChartQAとPlotQA-Dデータセットに関する総合的な実験によると、GoT-CQAは、特に複雑な人間記述や推論の質問において、最新の一般的なベースラインと比較して、優れたパフォーマンスを達成する。
関連論文リスト
- ANetQA: A Large-scale Benchmark for Fine-grained Compositional Reasoning
over Untrimmed Videos [120.80589215132322]
ANetQAは,ActivityNetの未トリミングビデオに対して,詳細な合成推論をサポートする大規模ベンチマークである。
ANetQAは140億のアンバランスと1340万のバランスの取れたQAペアを達成した。
最高のモデルでは44.5%の精度が達成され、人間のパフォーマンスは84.5%に上り、改善の余地は十分残っている。
論文 参考訳(メタデータ) (2023-05-04T03:04:59Z) - Neural Graph Reasoning: Complex Logical Query Answering Meets Graph
Databases [63.96793270418793]
複雑な論理クエリ応答(CLQA)は、グラフ機械学習の最近登場したタスクである。
ニューラルグラフデータベース(NGDB)の概念を紹介する。
NGDBはNeural Graph StorageとNeural Graph Engineで構成されている。
論文 参考訳(メタデータ) (2023-03-26T04:03:37Z) - OpenCQA: Open-ended Question Answering with Charts [6.7038829115674945]
我々はOpenCQAと呼ばれる新しいタスクを導入し、そこではグラフに関するオープンな質問にテキストで答えることが目的である。
3つの実践的な設定の下で,一連のベースラインを実装し,評価する。
結果から,トップパフォーマンスモデルは通常,流動的かつコヒーレントなテキストを生成することが示された。
論文 参考訳(メタデータ) (2022-10-12T23:37:30Z) - ChartQA: A Benchmark for Question Answering about Charts with Visual and
Logical Reasoning [7.192233658525916]
9.6Kの人書き質問と23.1Kの人書きチャートの要約から生成される質問に関するベンチマークを示す。
本稿では,視覚的特徴とグラフのデータテーブルを組み合わせた2つのトランスフォーマーモデルを提案する。
論文 参考訳(メタデータ) (2022-03-19T05:00:30Z) - QA4QG: Using Question Answering to Constrain Multi-Hop Question
Generation [54.136509061542775]
マルチホップ質問生成(MQG)は、入力パスの複数の情報に対する推論を必要とする複雑な質問を生成することを目的としている。
MQGのためのQA強化BARTベースのフレームワークであるQA4QGを提案する。
HotpotQAデータセットの結果は、QA4QGがすべての最先端モデルより優れていることを示している。
論文 参考訳(メタデータ) (2022-02-14T08:16:47Z) - Classification-Regression for Chart Comprehension [16.311371103939205]
チャート質問応答(CQA)は、チャート理解を評価するために用いられるタスクである。
分類と回帰を共同で学習する新しいモデルを提案する。
私たちのモデルのエッジは、特に語彙外回答の質問に重点を置いています。
論文 参考訳(メタデータ) (2021-11-29T18:46:06Z) - NOAHQA: Numerical Reasoning with Interpretable Graph Question Answering
Dataset [26.782937852417454]
複素数式を用いた数値推論を必要とする質問をバイリンガルなQAデータセットであるNOAHQAを紹介する。
我々は,NOAHQA上で既存のQAデータセットを用いてトレーニングした最先端QAモデルを評価し,その中の最良のものが55.5の正確なマッチスコアしか達成できないことを示す。
また、推論グラフの計量値が人間に比べて大きなギャップを持つような推論グラフを生成するための新しいQAモデルを提案する。
論文 参考訳(メタデータ) (2021-09-22T09:17:09Z) - NExT-QA:Next Phase of Question-Answering to Explaining Temporal Actions [80.60423934589515]
NExT-QAは、厳密に設計されたビデオ質問回答(VideoQA)ベンチマークです。
因果的行動推論,時間的行動推論,共通場面理解を対象とする複数選択およびオープンエンドQAタスクを構築した。
トップパフォーマンスの手法は浅い場面記述に優れているが、因果的および時間的行動推論に弱い。
論文 参考訳(メタデータ) (2021-05-18T04:56:46Z) - ExplaGraphs: An Explanation Graph Generation Task for Structured
Commonsense Reasoning [65.15423587105472]
スタンス予測のための説明グラフ生成の新しい生成および構造化コモンセンスリゾニングタスク(および関連するデータセット)を紹介します。
具体的には、信念と議論が与えられた場合、モデルは、議論が信念を支持しているかどうかを予測し、予測されたスタンスに対する非自明で完全で曖昧な説明として機能する常識強化グラフを生成する必要がある。
グラフの83%は、様々な構造と推論深度を持つ外部のコモンセンスノードを含んでいる。
論文 参考訳(メタデータ) (2021-04-15T17:51:36Z) - SQuINTing at VQA Models: Introspecting VQA Models with Sub-Questions [66.86887670416193]
現状のVQAモデルでは、知覚や推論の問題に答える上で同等の性能を持つが、一貫性の問題に悩まされていることを示す。
この欠点に対処するため、サブクエスト対応ネットワークチューニング(SQuINT)というアプローチを提案する。
我々は,SQuINTがモデル一貫性を5%向上し,VQAにおける推論問題の性能も改善し,注意マップも改善したことを示す。
論文 参考訳(メタデータ) (2020-01-20T01:02:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。