論文の概要: Deconfounded Causality-aware Parameter-Efficient Fine-Tuning for Problem-Solving Improvement of LLMs
- arxiv url: http://arxiv.org/abs/2409.02686v1
- Date: Wed, 4 Sep 2024 13:17:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-05 18:26:46.805704
- Title: Deconfounded Causality-aware Parameter-Efficient Fine-Tuning for Problem-Solving Improvement of LLMs
- Title(参考訳): LLMの問題解決に有効な因果性を考慮した高精度微調整法
- Authors: Ruoyu Wang, Xiaoxuan Li, Lina Yao,
- Abstract要約: 大規模言語モデル(LLM)は、人間の指示に基づいて様々なタスクに取り組む際に、顕著な効率性を示した。
最近の研究では、これらのモデルが、数学や物理学のような推論に関わる問題に関して、満足な結果を得ることができないことがしばしば明らかになっている。
本稿では,モデルの推論能力を高めるために,新しいパラメータ効率細調整法であるDecon founded Causal Adaptation (DCA)を提案する。
- 参考スコア(独自算出の注目度): 12.48241058167222
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) have demonstrated remarkable efficiency in tackling various tasks based on human instructions, but recent studies reveal that these models often fail to achieve satisfactory results on questions involving reasoning, such as mathematics or physics questions. This phenomenon is usually attributed to the uncertainty regarding whether these models could genuinely comprehend the knowledge embedded in the text or merely learn to replicate the token distribution without a true understanding of the content. In this paper, we delve into this problem and aim to enhance the reasoning capabilities of LLMs. First, we investigate if the model has genuine reasoning capabilities by visualizing the text generation process at the attention and representation level. Then, we formulate the reasoning process of LLMs into a causal framework, which provides a formal explanation of the problems we observe in the visualization. Finally, building upon this causal framework, we propose Deconfounded Causal Adaptation (DCA), a novel parameter-efficient fine-tuning (PEFT) method to enhance the model's reasoning capabilities by encouraging the model to extract the general problem-solving skills and apply these skills to different questions. Experiments show that our method outperforms the baseline consistently across multiple benchmarks, and with only 1.2M tunable parameters, we achieve better or comparable results to other fine-tuning methods. This demonstrates the effectiveness and efficiency of our method in improving the overall accuracy and reliability of LLMs.
- Abstract(参考訳): 大規模言語モデル(LLM)は、人間の指示に基づいて様々なタスクに取り組む上で、顕著な効率性を示しているが、最近の研究では、数学や物理学の質問など、推論に関わる問題に対して、これらのモデルが満足のいく結果を得ることができないことがしばしば示されている。
この現象は、通常、これらのモデルが本文に埋め込まれた知識を真に理解できるかどうか、あるいは、コンテンツに関する真の理解なしに、単にトークンの分布を複製することを学ぶことができるかどうか、不確実性に起因する。
本稿では,この問題を掘り下げ,LLMの推論能力を高めることを目的とする。
まず,テキスト生成過程を注意・表現レベルで可視化することで,本モデルに真の推論能力があるかどうかを検討する。
次に, LLMの推論過程を因果的枠組みに定式化し, 可視化における問題点を公式に説明する。
最後に、この因果的枠組みに基づいて、モデルが一般的な問題解決スキルを抽出し、これらのスキルを異なる質問に適用するように促すことにより、モデルの推論能力を高めるために、新しいパラメータ効率の良い微調整(PEFT)手法であるDecon founded Causal Adaptation (DCA)を提案する。
実験の結果,本手法は複数のベンチマークで一貫した性能を示し,1.2万のチューナブルパラメータで他の微調整法と同等以上の結果が得られることがわかった。
これにより,LLMの全体的な精度と信頼性を向上させる上で,本手法の有効性と効率性を示す。
関連論文リスト
- Exposing the Achilles' Heel: Evaluating LLMs Ability to Handle Mistakes in Mathematical Reasoning [11.63133816413199]
大言語モデル (LLM) は数学語問題 (MWP) に適用されている。
本稿では,ルールベース手法とより小さな言語モデルにより生成される正しい推論ステップと誤推論ステップをMWPに組み込んだ,新しいデータセットMWP-MISTAKEを提案する。
GPT-$oの誤り検出と修正における優れた性能と、より小さなモデルで直面する永続的な課題を強調した。
論文 参考訳(メタデータ) (2024-06-16T08:06:05Z) - MindStar: Enhancing Math Reasoning in Pre-trained LLMs at Inference Time [51.5039731721706]
MindStarは、大言語モデルの純粋に推論に基づく探索手法である。
推論タスクを探索問題として定式化し、最適な推論経路を特定するための2つの探索アイデアを提案する。
Llama-2-13BやMistral-7Bのようなオープンソースモデルの推論能力を大幅に向上させ、GPT-3.5やGrok-1に匹敵する性能を実現している。
論文 参考訳(メタデータ) (2024-05-25T15:07:33Z) - Can formal argumentative reasoning enhance LLMs performances? [0.3659498819753633]
本稿では,Large Language Models (LLM) の性能に及ぼす計算論証セマンティクスの導入効果を評価するパイプライン (MQArgEng) を提案する。
調査の結果、MQArgEngは、調査対象のトピックのカテゴリの大部分で適度なパフォーマンス向上をもたらし、将来性を示し、さらなる研究を保証していることが示された。
論文 参考訳(メタデータ) (2024-05-16T22:09:31Z) - Learning From Correctness Without Prompting Makes LLM Efficient Reasoner [30.203952806009717]
大規模言語モデル(LLM)は様々なタスクで優れた性能を示してきたが、幻覚、不誠実な推論、有害な内容などの制限がまだ残っている。
人間のフィードバックや外部ツール,手工芸のプロンプトを不要にする,本質的な自己修正推論フレームワークをLLMに導入する。
論文 参考訳(メタデータ) (2024-03-28T02:12:49Z) - Faithful Explanations of Black-box NLP Models Using LLM-generated
Counterfactuals [67.64770842323966]
NLPシステムの予測に関する因果的説明は、安全性を確保し、信頼を確立するために不可欠である。
既存の手法は、しばしばモデル予測を効果的または効率的に説明できない。
本稿では, 対物近似(CF)の2つの手法を提案する。
論文 参考訳(メタデータ) (2023-10-01T07:31:04Z) - Measuring and Improving Chain-of-Thought Reasoning in Vision-Language Models [61.28463542324576]
視覚言語モデル(VLM)は近年,人間のような出力を生成できる視覚アシスタントとして,強力な有効性を示している。
我々は、既存の最先端のVLMを評価し、最高の性能モデルでさえ、強力な視覚的推論能力と一貫性を示すことができないことを発見した。
本稿では,VLMの推論性能と一貫性の向上を目的とした2段階トレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-08T17:49:44Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
オープン情報抽出(OIE)タスクは、構造化されていないテキストから構造化された事実を抽出することを目的としている。
一般的なタスク解決手段としてChatGPTのような大きな言語モデル(LLM)の可能性にもかかわらず、OIEタスクの最先端(教師付き)メソッドは遅れている。
論文 参考訳(メタデータ) (2023-09-07T01:35:24Z) - Automatically Correcting Large Language Models: Surveying the landscape
of diverse self-correction strategies [104.32199881187607]
大規模言語モデル(LLM)は、幅広いNLPタスクで顕著な性能を示した。
これらの欠陥を正すための有望なアプローチは自己補正であり、LLM自体が自身の出力で問題を修正するために誘導される。
本稿では,この新技術について概観する。
論文 参考訳(メタデータ) (2023-08-06T18:38:52Z) - Do Emergent Abilities Exist in Quantized Large Language Models: An
Empirical Study [90.34226812493083]
本研究の目的は,LLMを小言語モデルと区別する重要な特徴である現象能力に対する量子化の影響を検討することである。
実験により、これらの創発能力は4ビット量子化モデルに残っており、2ビットモデルは深刻な性能劣化に直面していることがわかった。
低ビットモデルの性能向上のために,(1) 部品(またはサブ構造)が量子化に敏感である場合の微視的影響解析,(2) モデル微視化による性能補償の2つの実験を行った。
論文 参考訳(メタデータ) (2023-07-16T15:11:01Z) - Post Hoc Explanations of Language Models Can Improve Language Models [43.2109029463221]
AMPLIFY(Post Hoc Explanations)を用いたインコンテキスト学習の活用によるモデル性能向上のための新しいフレームワークを提案する。
我々は,各入力特徴がモデル予測に与える影響を抽出し,帰属スコア(説明)を出力するポストホック説明手法を活用する。
AMPLIFYは,幅広いタスクに対して約10~25%の精度向上を実現している。
論文 参考訳(メタデータ) (2023-05-19T04:46:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。