論文の概要: Does the Vulnerability Threaten Our Projects? Automated Vulnerable API Detection for Third-Party Libraries
- arxiv url: http://arxiv.org/abs/2409.02753v1
- Date: Wed, 4 Sep 2024 14:31:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-05 17:55:43.309442
- Title: Does the Vulnerability Threaten Our Projects? Automated Vulnerable API Detection for Third-Party Libraries
- Title(参考訳): 脆弱性は我々のプロジェクトを妨げるか? サードパーティ製ライブラリの自動脆弱性API検出
- Authors: Fangyuan Zhang, Lingling Fan, Sen Chen, Miaoying Cai, Sihan Xu, Lida Zhao,
- Abstract要約: 本稿では,TPLの脆弱性の原因となる脆弱性のあるルートメソッドを効果的に同定できるVAScannerを提案する。
VAScannerは、5.78%の偽陽性と2.16%の偽陰性を除去する。
脆弱性のあるTPLを使用した3,147のプロジェクトの大規模な分析では、脆弱性のあるAPIによって21.51%のプロジェクトが脅かされていることがわかった。
- 参考スコア(独自算出の注目度): 11.012017507408078
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Developers usually use TPLs to facilitate the development of the projects to avoid reinventing the wheels, however, the vulnerable TPLs indeed cause severe security threats. The majority of existing research only considered whether projects used vulnerable TPLs but neglected whether the vulnerable code of the TPLs was indeed used by the projects, which inevitably results in false positives and further requires additional patching efforts and maintenance costs. To address this, we propose VAScanner, which can effectively identify vulnerable root methods causing vulnerabilities in TPLs and further identify all vulnerable APIs of TPLs used by Java projects. Specifically, we first collect the initial patch methods from the patch commits and extract accurate patch methods by employing a patch-unrelated sifting mechanism, then we further identify the vulnerable root methods for each vulnerability by employing an augmentation mechanism. Based on them, we leverage backward call graph analysis to identify all vulnerable APIs for each vulnerable TPL version and construct a database consisting of 90,749 (2,410,779 with library versions) vulnerable APIs with 1.45% false positive proportion with a 95% CI of [1.31%, 1.59%] from 362 TPLs with 14,775 versions. Our experiments show VAScanner eliminates 5.78% false positives and 2.16% false negatives owing to the proposed sifting and augmentation mechanisms. Besides, it outperforms the state-of-the-art method-level tool in analyzing direct dependencies, Eclipse Steady, achieving more effective detection of vulnerable APIs. Furthermore, in a large-scale analysis of 3,147 projects using vulnerable TPLs, we find only 21.51% of projects (with 1.83% false positive proportion and a 95% CI of [0.71%, 4.61%]) were threatened through vulnerable APIs by vulnerable TPLs, demonstrating that VAScanner can potentially reduce false positives significantly.
- Abstract(参考訳): 開発者は通常、車輪の再発明を避けるためにTPLを使用するが、脆弱なTPLは深刻なセキュリティ上の脅威を引き起こす。
既存の研究の大半は、プロジェクトが脆弱なTPLを使用するかどうかのみ検討したが、TPLの脆弱なコードが実際にプロジェクトによって使用されているかどうかを無視した。
そこで本研究では,TPLの脆弱性の原因となる脆弱性のあるルートメソッドを効果的に識別し,Javaプロジェクトで使用されているTPLの脆弱性のあるAPIをすべて識別するVAScannerを提案する。
具体的には、まずパッチコミットから初期パッチメソッドを収集し、パッチ関連シフティング機構を用いて正確なパッチメソッドを抽出する。
それらに基づいて、バックワードコールグラフ分析を利用して、脆弱性のあるTPLバージョン毎のすべての脆弱なAPIを特定し、14,775バージョンの362TPLから95%のCIで1.45%の偽陽性の90,749(ライブラリバージョン2,410,779)の脆弱なAPIからなるデータベースを構築する。
実験の結果,VAScannerは偽陽性5.78%,偽陰性2.16%を除去した。
さらに、Eclipse Steadyという直接的な依存関係を分析する上で、最先端のメソッドレベルのツールよりも優れており、脆弱なAPIのより効果的な検出を実現している。
さらに、脆弱なTPLを使用した3,147プロジェクトの大規模分析では、21.51%のプロジェクト(1.83%が偽陽性、95%が[0.71%, 4.61%])が脆弱なTPLによる脆弱なAPIによって脅かされ、VAScannerが偽陽性を著しく低減できることを示した。
関連論文リスト
- Comparison of Static Application Security Testing Tools and Large Language Models for Repo-level Vulnerability Detection [11.13802281700894]
静的アプリケーションセキュリティテスト(SAST)は通常、セキュリティ脆弱性のソースコードをスキャンするために使用される。
ディープラーニング(DL)ベースの手法は、ソフトウェア脆弱性検出の可能性を実証している。
本稿では,ソフトウェア脆弱性を検出するために,15種類のSASTツールと12種類の最先端のオープンソースLLMを比較した。
論文 参考訳(メタデータ) (2024-07-23T07:21:14Z) - LLM-Assisted Static Analysis for Detecting Security Vulnerabilities [14.188864624736938]
大規模言語モデルと静的解析を組み合わせることで,脆弱性検出のためのリポジトリ全体の推論を行うIRISを提案する。
IRISは、GPT-4を使用して、CWE-Bench-Javaの120の脆弱性のうち69を検知する。
IRISはまた、誤報の回数(ベストケースの80%以上)を著しく削減する。
論文 参考訳(メタデータ) (2024-05-27T14:53:35Z) - Static Application Security Testing (SAST) Tools for Smart Contracts: How Far Are We? [14.974832502863526]
近年,スマートコントラクトセキュリティの重要性が高まっている。
この問題に対処するため、スマートコントラクトの脆弱性を検出するために、多数の静的アプリケーションセキュリティテスト(SAST)ツールが提案されている。
本稿では,スマートコントラクトに対する45種類の脆弱性を含む,最新のきめ細かな分類法を提案する。
論文 参考訳(メタデータ) (2024-04-28T13:40:18Z) - Exploiting Library Vulnerability via Migration Based Automating Test
Generation [16.39796265296833]
ソフトウェア開発において、開発者は既存の機能を実装するのを避けるためにサードパーティのライブラリを幅広く利用する。
脆弱性のエクスプロイトは、公開後に脆弱性を再現するためのコードスニペットとして、豊富な脆弱性関連情報を含んでいる。
本研究は、開発者が依存関係を更新するかどうかを判断する基盤として脆弱性エクスプロイトテストを提供するVESTAと呼ばれる、脆弱性エクスプロイトに基づく新しい手法を提案する。
論文 参考訳(メタデータ) (2023-12-15T06:46:45Z) - Can Large Language Models Find And Fix Vulnerable Software? [0.0]
GPT-4は、その脆弱性の約4倍の脆弱性を同定した。
各脆弱性に対して実行可能な修正を提供し、偽陽性率の低いことを証明した。
GPT-4のコード修正により脆弱性の90%が減少し、コード行数はわずか11%増加した。
論文 参考訳(メタデータ) (2023-08-20T19:33:12Z) - G$^2$uardFL: Safeguarding Federated Learning Against Backdoor Attacks
through Attributed Client Graph Clustering [116.4277292854053]
Federated Learning (FL)は、データ共有なしで協調的なモデルトレーニングを提供する。
FLはバックドア攻撃に弱いため、有害なモデル重みがシステムの整合性を損なう。
本稿では、悪意のあるクライアントの識別を属性グラフクラスタリング問題として再解釈する保護フレームワークであるG$2$uardFLを提案する。
論文 参考訳(メタデータ) (2023-06-08T07:15:04Z) - DRSM: De-Randomized Smoothing on Malware Classifier Providing Certified
Robustness [58.23214712926585]
我々は,マルウェア検出領域の非ランダム化スムース化技術を再設計し,DRSM(De-Randomized Smoothed MalConv)を開発した。
具体的には,実行可能ファイルの局所構造を最大に保ちながら,逆数バイトの影響を確実に抑制するウィンドウアブレーション方式を提案する。
私たちは、マルウェア実行ファイルの静的検出という領域で、認証された堅牢性を提供する最初の人です。
論文 参考訳(メタデータ) (2023-03-20T17:25:22Z) - VELVET: a noVel Ensemble Learning approach to automatically locate
VulnErable sTatements [62.93814803258067]
本稿では,ソースコード中の脆弱な文を見つけるための新しいアンサンブル学習手法であるVELVETを提案する。
我々のモデルは、グラフベースとシーケンスベースニューラルネットワークを組み合わせて、プログラムグラフの局所的およびグローバル的コンテキストを捕捉する。
VELVETは、合成データと実世界のデータに対して、それぞれ99.6%と43.6%の精度を達成している。
論文 参考訳(メタデータ) (2021-12-20T22:45:27Z) - ESCORT: Ethereum Smart COntRacTs Vulnerability Detection using Deep
Neural Network and Transfer Learning [80.85273827468063]
既存の機械学習ベースの脆弱性検出方法は制限され、スマートコントラクトが脆弱かどうかのみ検査される。
スマートコントラクトのための初のDeep Neural Network(DNN)ベースの脆弱性検出フレームワークであるESCORTを提案する。
ESCORTは6種類の脆弱性に対して平均95%のF1スコアを達成し,検出時間は契約あたり0.02秒であることを示す。
論文 参考訳(メタデータ) (2021-03-23T15:04:44Z) - Adversarial EXEmples: A Survey and Experimental Evaluation of Practical
Attacks on Machine Learning for Windows Malware Detection [67.53296659361598]
EXEmplesは、比較的少ない入力バイトを摂動することで、機械学習に基づく検出をバイパスすることができる。
我々は、機械学習モデルに対する過去の攻撃を包含し、一般化するだけでなく、3つの新たな攻撃を含む統一フレームワークを開発する。
これらの攻撃はFull DOS、Extended、Shiftと呼ばれ、DOSヘッダをそれぞれ操作し、拡張し、第1セクションの内容を変更することで、敵のペイロードを注入する。
論文 参考訳(メタデータ) (2020-08-17T07:16:57Z) - (De)Randomized Smoothing for Certifiable Defense against Patch Attacks [136.79415677706612]
我々は、所定の画像とパッチ攻撃サイズを保証する、パッチ攻撃に対する認証可能な防御を導入する。
本手法はランダム化スムースなロバスト性スキームの幅広いクラスに関係している。
その結果,CIFAR-10およびImageNetに対するパッチ攻撃に対する認証済みの防御技術が確立した。
論文 参考訳(メタデータ) (2020-02-25T08:39:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。