Dual-Directed Algorithm Design for Efficient Pure Exploration
- URL: http://arxiv.org/abs/2310.19319v3
- Date: Tue, 27 May 2025 14:35:51 GMT
- Title: Dual-Directed Algorithm Design for Efficient Pure Exploration
- Authors: Chao Qin, Wei You,
- Abstract summary: We develop a new design principle for pure-exploration problems that extends the top-two approach beyond best-arm identification.<n>We prove that, when combined with Information-Directed Selection, top-two Thompson sampling attains optimality for best-arm identification.<n>We also produce optimal algorithms for thresholding bandits and $varepsilon$-best-arm identification.
- Score: 9.728332815218181
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While experimental design often focuses on selecting the single best alternative from a finite set (e.g., in ranking and selection or best-arm identification), many pure-exploration problems pursue richer goals. Given a specific goal, adaptive experimentation aims to achieve it by strategically allocating sampling effort, with the underlying sample complexity characterized by a maximin optimization problem. By introducing dual variables, we derive necessary and sufficient conditions for an optimal allocation, yielding a unified algorithm design principle that extends the top-two approach beyond best-arm identification. This principle gives rise to Information-Directed Selection, a hyperparameter-free rule that dynamically evaluates and chooses among candidates based on their current informational value. We prove that, when combined with Information-Directed Selection, top-two Thompson sampling attains asymptotic optimality for Gaussian best-arm identification, resolving a notable open question in the pure-exploration literature. Furthermore, our framework produces asymptotically optimal algorithms for pure-exploration thresholding bandits and $\varepsilon$-best-arm identification (i.e., ranking and selection with probability-of-good-selection guarantees), and more generally establishes a recipe for adapting Thompson sampling across a broad class of pure-exploration problems. Extensive numerical experiments highlight the efficiency of our proposed algorithms compared to existing methods.
Related papers
- Asymptotically Optimal Linear Best Feasible Arm Identification with Fixed Budget [55.938644481736446]
We introduce a novel algorithm for best feasible arm identification that guarantees an exponential decay in the error probability.<n>We validate our algorithm through comprehensive empirical evaluations across various problem instances with different levels of complexity.
arXiv Detail & Related papers (2025-06-03T02:56:26Z) - Towards Optimal Multi-draft Speculative Decoding [102.67837141152232]
Multi-Draft Speculative Decoding (MDSD) is a recent approach where, when generating each token, a small draft model generates multiple drafts.<n>This paper discusses the dual of the optimal transport problem, providing a way to efficiently compute the optimal acceptance rate.
arXiv Detail & Related papers (2025-02-26T03:22:44Z) - An incremental preference elicitation-based approach to learning potentially non-monotonic preferences in multi-criteria sorting [53.36437745983783]
We first construct a max-margin optimization-based model to model potentially non-monotonic preferences.
We devise information amount measurement methods and question selection strategies to pinpoint the most informative alternative in each iteration.
Two incremental preference elicitation-based algorithms are developed to learn potentially non-monotonic preferences.
arXiv Detail & Related papers (2024-09-04T14:36:20Z) - Optimal Multi-Fidelity Best-Arm Identification [65.23078799972188]
In bandit best-arm identification, an algorithm is tasked with finding the arm with highest mean reward with a specified accuracy as fast as possible.
We study multi-fidelity best-arm identification, in which the can choose to sample an arm at a lower fidelity (less accurate mean estimate) for a lower cost.
Several methods have been proposed for tackling this problem, but their optimality remain elusive, notably due to loose lower bounds on the total cost needed to identify the best arm.
arXiv Detail & Related papers (2024-06-05T08:02:40Z) - Dynamic Incremental Optimization for Best Subset Selection [15.8362578568708]
Best subset selection is considered the gold standard for many learning problems.
An efficient subset-dual algorithm is developed based on the primal and dual problem structures.
arXiv Detail & Related papers (2024-02-04T02:26:40Z) - Likelihood Ratio Confidence Sets for Sequential Decision Making [51.66638486226482]
We revisit the likelihood-based inference principle and propose to use likelihood ratios to construct valid confidence sequences.
Our method is especially suitable for problems with well-specified likelihoods.
We show how to provably choose the best sequence of estimators and shed light on connections to online convex optimization.
arXiv Detail & Related papers (2023-11-08T00:10:21Z) - Generalizing Bayesian Optimization with Decision-theoretic Entropies [102.82152945324381]
We consider a generalization of Shannon entropy from work in statistical decision theory.
We first show that special cases of this entropy lead to popular acquisition functions used in BO procedures.
We then show how alternative choices for the loss yield a flexible family of acquisition functions.
arXiv Detail & Related papers (2022-10-04T04:43:58Z) - Best Subset Selection with Efficient Primal-Dual Algorithm [24.568094642425837]
Best subset selection is considered the gold standard' for many learning problems.
In this paper, we investigate the dual forms of a family of $ell$-regularized problems.
An efficient primal-dual method has been developed based on the primal and dual problem structures.
arXiv Detail & Related papers (2022-07-05T14:07:52Z) - Choosing Answers in $\varepsilon$-Best-Answer Identification for Linear
Bandits [0.8122270502556374]
In a pure-exploration problem, information is gathered sequentially to answer a question on the environment.
We show that picking the answer with highest mean does not allow an algorithm to reach optimality in terms of expected sample complexity.
We develop a simple procedure to adapt best-arm identification algorithms to tackle $varepsilon$-best-answer identification in transductive linear bandits.
arXiv Detail & Related papers (2022-06-09T12:27:51Z) - Information-Directed Selection for Top-Two Algorithms [13.339829037245963]
We consider the best-k-arm identification problem for multi-armed bandits.
The objective is to select the exact set of k arms with the highest mean rewards by sequentially allocating measurement effort.
We propose information-directed selection (IDS) that selects one of the top-two candidates based on a measure of information gain.
arXiv Detail & Related papers (2022-05-24T14:07:13Z) - Local policy search with Bayesian optimization [73.0364959221845]
Reinforcement learning aims to find an optimal policy by interaction with an environment.
Policy gradients for local search are often obtained from random perturbations.
We develop an algorithm utilizing a probabilistic model of the objective function and its gradient.
arXiv Detail & Related papers (2021-06-22T16:07:02Z) - High Probability Complexity Bounds for Non-Smooth Stochastic Optimization with Heavy-Tailed Noise [51.31435087414348]
It is essential to theoretically guarantee that algorithms provide small objective residual with high probability.
Existing methods for non-smooth convex optimization have complexity bounds with dependence on confidence level.
We propose novel stepsize rules for two methods with gradient clipping.
arXiv Detail & Related papers (2021-06-10T17:54:21Z) - Navigating to the Best Policy in Markov Decision Processes [68.8204255655161]
We investigate the active pure exploration problem in Markov Decision Processes.
Agent sequentially selects actions and, from the resulting system trajectory, aims at the best as fast as possible.
arXiv Detail & Related papers (2021-06-05T09:16:28Z) - Adaptive Sampling for Best Policy Identification in Markov Decision
Processes [79.4957965474334]
We investigate the problem of best-policy identification in discounted Markov Decision (MDPs) when the learner has access to a generative model.
The advantages of state-of-the-art algorithms are discussed and illustrated.
arXiv Detail & Related papers (2020-09-28T15:22:24Z) - Stochastic Optimization Forests [60.523606291705214]
We show how to train forest decision policies by growing trees that choose splits to directly optimize the downstream decision quality, rather than splitting to improve prediction accuracy as in the standard random forest algorithm.
We show that our approximate splitting criteria can reduce running time hundredfold, while achieving performance close to forest algorithms that exactly re-optimize for every candidate split.
arXiv Detail & Related papers (2020-08-17T16:56:06Z) - Gamification of Pure Exploration for Linear Bandits [34.16123941778227]
We investigate an active pure-exploration setting, that includes best-arm identification, in the context of linear bandits.
Whileally optimal algorithms exist for standard multi-arm bandits, the existence of such algorithms for the best-arm identification in linear bandits has been elusive.
We design the first insightally optimal algorithm for fixed-confidence pure exploration in linear bandits.
arXiv Detail & Related papers (2020-07-02T08:20:35Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
We prove the $mathcaltilde O(t-1/4)$ rate of convergence for the norm of the gradient of Moreau envelope.
Our analysis works with mini-batch size of $1$, constant first and second order moment parameters, and possibly smooth optimization domains.
arXiv Detail & Related papers (2020-06-11T17:43:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.