Towards Edge-Based Data Lake Architecture for Intelligent Transportation System
- URL: http://arxiv.org/abs/2409.02808v1
- Date: Wed, 4 Sep 2024 15:25:28 GMT
- Title: Towards Edge-Based Data Lake Architecture for Intelligent Transportation System
- Authors: Danilo Fernandes, Douglas L. L. Moura, Gean Santos, Geymerson S. Ramos, Fabiane Queiroz, Andre L. L. Aquino,
- Abstract summary: This work proposes an Edge-based Data Lake Architecture to integrate and analyze the complex data from ITS efficiently.
We demonstrate the effectiveness of the architecture through an analysis of three different use cases.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid urbanization growth has underscored the need for innovative solutions to enhance transportation efficiency and safety. Intelligent Transportation Systems (ITS) have emerged as a promising solution in this context. However, analyzing and processing the massive and intricate data generated by ITS presents significant challenges for traditional data processing systems. This work proposes an Edge-based Data Lake Architecture to integrate and analyze the complex data from ITS efficiently. The architecture offers scalability, fault tolerance, and performance, improving decision-making and enhancing innovative services for a more intelligent transportation ecosystem. We demonstrate the effectiveness of the architecture through an analysis of three different use cases: (i) Vehicular Sensor Network, (ii) Mobile Network, and (iii) Driver Identification applications.
Related papers
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - Optimizing Age of Information in Vehicular Edge Computing with Federated Graph Neural Network Multi-Agent Reinforcement Learning [44.17644657738893]
This paper focuses on the Age of Information (AoI) as a key metric for data freshness and explores task offloading issues for vehicles under RSU communication resource constraints.
We propose an innovative distributed federated learning framework combining Graph Neural Networks (GNN), named Federated Graph Neural Network Multi-Agent Reinforcement Learning (FGNN-MADRL) to optimize AoI across the system.
arXiv Detail & Related papers (2024-07-01T15:37:38Z) - Recent Advances in Graph-based Machine Learning for Applications in
Smart Urban Transportation Systems [7.335098632782098]
The chapter presents background information on the key technical challenges for ITS design, along with a review of research methods.
We provide an in-depth review of graph-based machine learning methods, including basic concepts of graphs, graph data representation, graph neural network architectures and their relation to ITS applications.
arXiv Detail & Related papers (2023-06-02T05:50:57Z) - Vision Paper: Causal Inference for Interpretable and Robust Machine
Learning in Mobility Analysis [71.2468615993246]
Building intelligent transportation systems requires an intricate combination of artificial intelligence and mobility analysis.
The past few years have seen rapid development in transportation applications using advanced deep neural networks.
This vision paper emphasizes research challenges in deep learning-based mobility analysis that require interpretability and robustness.
arXiv Detail & Related papers (2022-10-18T17:28:58Z) - Topics in Deep Learning and Optimization Algorithms for IoT Applications
in Smart Transportation [0.0]
This thesis investigates how different optimization algorithms and machine learning techniques can be leveraged to improve system performance.
In the first topic, we propose an optimal transmission frequency management scheme using decentralized ADMM-based method.
In the second topic, we leverage graph neural network (GNN) for demand prediction for shared bikes.
In the last topic, we consider a highway traffic network scenario where frequent lane changing behaviors may occur with probability.
arXiv Detail & Related papers (2022-10-13T11:45:30Z) - Intelligent Traffic Monitoring with Hybrid AI [78.65479854534858]
We introduce HANS, a neuro-symbolic architecture for multi-modal context understanding.
We show how HANS addresses the challenges associated with traffic monitoring while being able to integrate with a wide range of reasoning methods.
arXiv Detail & Related papers (2022-08-31T17:47:22Z) - Reliable Fleet Analytics for Edge IoT Solutions [0.0]
We propose a framework for facilitating machine learning at the edge for AIoT applications.
The contribution is an architecture that includes services, tools, and methods for delivering fleet analytics at scale.
We present a preliminary validation of the framework by performing experiments with IoT devices on a university campus's rooms.
arXiv Detail & Related papers (2021-01-12T11:28:43Z) - Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with
Heterogeneous Learning Tasks [53.1636151439562]
Mobile edge computing (MEC) provides a natural platform for AI applications.
We present an infrastructure to perform machine learning tasks at an MEC with the assistance of a reconfigurable intelligent surface (RIS)
Specifically, we minimize the learning error of all participating users by jointly optimizing transmit power of mobile users, beamforming vectors of the base station, and the phase-shift matrix of the RIS.
arXiv Detail & Related papers (2020-12-25T07:08:50Z) - Inertial Sensing Meets Artificial Intelligence: Opportunity or
Challenge? [12.244109673209769]
This article reviews the research on using AI technology to enhance inertial sensing from various aspects.
It includes sensor design and selection, calibration and error modeling, navigation and motion-sensing algorithms, multi-sensor information fusion, system evaluation, and practical application.
It summarizes nine advantages and nine challenges of AI-enhanced inertial sensing and then points out future research directions.
arXiv Detail & Related papers (2020-07-13T22:33:21Z) - Data Freshness and Energy-Efficient UAV Navigation Optimization: A Deep
Reinforcement Learning Approach [88.45509934702913]
We design a navigation policy for multiple unmanned aerial vehicles (UAVs) where mobile base stations (BSs) are deployed.
We incorporate different contextual information such as energy and age of information (AoI) constraints to ensure the data freshness at the ground BS.
By applying the proposed trained model, an effective real-time trajectory policy for the UAV-BSs captures the observable network states over time.
arXiv Detail & Related papers (2020-02-21T07:29:15Z) - Deep Learning based Pedestrian Inertial Navigation: Methods, Dataset and
On-Device Inference [49.88536971774444]
Inertial measurements units (IMUs) are small, cheap, energy efficient, and widely employed in smart devices and mobile robots.
Exploiting inertial data for accurate and reliable pedestrian navigation supports is a key component for emerging Internet-of-Things applications and services.
We present and release the Oxford Inertial Odometry dataset (OxIOD), a first-of-its-kind public dataset for deep learning based inertial navigation research.
arXiv Detail & Related papers (2020-01-13T04:41:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.