論文の概要: Exploring Sentiment Dynamics and Predictive Behaviors in Cryptocurrency Discussions by Few-Shot Learning with Large Language Models
- arxiv url: http://arxiv.org/abs/2409.02836v1
- Date: Wed, 4 Sep 2024 16:02:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-05 17:11:35.180187
- Title: Exploring Sentiment Dynamics and Predictive Behaviors in Cryptocurrency Discussions by Few-Shot Learning with Large Language Models
- Title(参考訳): 大規模言語モデルを用いたFew-Shot Learningによる暗号通貨討論における知覚ダイナミクスと予測行動の探索
- Authors: Moein Shahiki Tash, Zahra Ahani, Mohim Tash, Olga Kolesnikova, Grigori Sidorov,
- Abstract要約: 本研究は,暗号通貨に関する議論の中で,予測文,希望音声,レグレト検出行動の分析を行う。
そこで我々は,「予測文」という新しい分類手法を導入し,コメントを予測的・予測的・予測的・予測的・予測的・予測的・非予測的カテゴリーに分類する。
マティックは、楽観的な予測に対して顕著に高い正当性を示す。
- 参考スコア(独自算出の注目度): 4.573779790701493
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study performs analysis of Predictive statements, Hope speech, and Regret Detection behaviors within cryptocurrency-related discussions, leveraging advanced natural language processing techniques. We introduce a novel classification scheme named "Prediction statements," categorizing comments into Predictive Incremental, Predictive Decremental, Predictive Neutral, or Non-Predictive categories. Employing GPT-4o, a cutting-edge large language model, we explore sentiment dynamics across five prominent cryptocurrencies: Cardano, Binance, Matic, Fantom, and Ripple. Our analysis reveals distinct patterns in predictive sentiments, with Matic demonstrating a notably higher propensity for optimistic predictions. Additionally, we investigate hope and regret sentiments, uncovering nuanced interplay between these emotions and predictive behaviors. Despite encountering limitations related to data volume and resource availability, our study reports valuable discoveries concerning investor behavior and sentiment trends within the cryptocurrency market, informing strategic decision-making and future research endeavors.
- Abstract(参考訳): 本研究では,暗号通貨関連議論における予測文,希望音声,レグレト検出行動の分析を行い,高度な自然言語処理技術を活用する。
そこで我々は,「予測文」という新しい分類手法を導入し,コメントを予測的・予測的・予測的・予測的・予測的・予測的・非予測的カテゴリーに分類する。
最先端の大規模言語モデルであるGPT-4oを使って、Cardano、Binance、Matic、Fantom、Rippleという5つの著名な暗号通貨の感情ダイナミクスを探索する。
マティックは、楽観的な予測に対して顕著に高い正当性を示す。
さらに、これらの感情と予測行動の間のニュアンスな相互作用を明らかにすることによって、希望と後悔の感情を調査する。
データ量や資源の可利用性に限界があるにもかかわらず、暗号通貨市場における投資家の行動やセンチメントの傾向に関する貴重な発見を報告し、戦略的意思決定と今後の研究成果を報告した。
関連論文リスト
- Review of deep learning models for crypto price prediction: implementation and evaluation [5.240745112593501]
本稿では、暗号通貨価格予測のためのディープラーニングに関する文献をレビューし、暗号通貨価格予測のための新しいディープラーニングモデルを評価する。
我々のディープラーニングモデルには、長い短期記憶(LSTM)リカレントニューラルネットワークの変種、畳み込みニューラルネットワーク(CNN)の変種、トランスフォーマーモデルが含まれています。
また、新型コロナウイルスのパンデミックを通じて価格の大幅な変動を示す4つの暗号通貨のボラティリティ分析を実施している。
論文 参考訳(メタデータ) (2024-05-19T03:15:27Z) - Forecasting Cryptocurrency Prices Using Deep Learning: Integrating
Financial, Blockchain, and Text Data [3.8443430569753025]
我々は、先進的なディープラーニングNLP手法を用いて、公開感情が暗号通貨評価に与える影響を分析する。
我々は,NLPデータ統合の有無にかかわらず,各種MLモデルの性能を比較した。
我々は,Twitter-RoBERTaやBART MNLIといった事前学習モデルが,市場感情を捉える上で極めて有効であることを発見した。
論文 参考訳(メタデータ) (2023-11-23T16:14:44Z) - Decoding the Silent Majority: Inducing Belief Augmented Social Graph
with Large Language Model for Response Forecasting [74.68371461260946]
SocialSenseは、既存のソーシャルネットワーク上に信念中心のグラフを誘導するフレームワークであり、グラフベースの伝播によって社会的ダイナミクスを捉える。
本手法は,ゼロショット設定と教師あり設定の両方に対する実験的な評価において,既存の最先端技術を超えている。
論文 参考訳(メタデータ) (2023-10-20T06:17:02Z) - Causal Feature Engineering of Price Directions of Cryptocurrencies using Dynamic Bayesian Networks [1.4356611205757077]
仮想通貨の人気は上昇しているが、価格のボラティリティと不確実性のため、暗号通貨はリスクの高い投資のままである。
本稿では,5つの人気の価格方向を予測できる動的ベイズネットワーク(DBN)手法を提案する。
次のトレーディングデーでBitcoin以外は。
論文 参考訳(メタデータ) (2023-06-13T22:07:51Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and
Large Language Models [57.70351255180495]
当社はChatGPTを使用して、各見出しが企業の株価に対して良いか悪いか、中立かを評価する。
また,ChatGPTは従来の感情分析法よりも優れていた。
ChatGPT-4に基づくロングショート戦略はシャープ比が最も高い。
論文 参考訳(メタデータ) (2023-04-15T19:22:37Z) - A Word is Worth A Thousand Dollars: Adversarial Attack on Tweets Fools
Stock Prediction [100.9772316028191]
本稿では,3つのストック予測犠牲者モデルを騙すために,様々な攻撃構成を試行する。
以上の結果から,提案手法が一貫した成功率を達成し,取引シミュレーションにおいて大きな損失をもたらす可能性が示唆された。
論文 参考訳(メタデータ) (2022-05-01T05:12:22Z) - Social Media Sentiment Analysis for Cryptocurrency Market Prediction [0.0]
我々は、異なる感情指標がBitcoinの価格変動とどのように相関しているかを研究する。
モデルのうちの1つは、他の20以上の公的なモデルよりも優れています。
論文 参考訳(メタデータ) (2022-04-19T03:27:29Z) - Learning Theory of Mind via Dynamic Traits Attribution [59.9781556714202]
本稿では,過去のトラジェクトリからアクターの潜在特性ベクトルを生成するニューラルToMアーキテクチャを提案する。
この特性ベクトルは、予測ニューラルネットワークの高速重み付けスキームを介して予測機構を乗法的に変調する。
実験により,高速重量はエージェントの特性をモデル化し,マインドリーディング能力を向上させるために優れた誘導バイアスを与えることが示された。
論文 参考訳(メタデータ) (2022-04-17T11:21:18Z) - LSTM Based Sentiment Analysis for Cryptocurrency Prediction [11.811501670389935]
この研究は、ソーシャルメディアの感情を分析することによって、暗号通貨の揮発性価格の動きを予測することを目的としています。
本稿では,中国のソーシャルメディアプラットフォームSina-Weiboにおける,中国のソーシャルメディア投稿の感情を識別する手法を提案する。
Weiboポストをキャプチャし、暗号固有の感情辞書の作成を記述したパイプラインを開発し、Long Short-term memory(LSTM)ベースのリカレントニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2021-03-27T04:08:37Z) - A Sentiment Analysis Approach to the Prediction of Market Volatility [62.997667081978825]
金融ニュースとツイートから抽出された感情とFTSE100の動きの関係を調べました。
ニュース見出しから得られた感情は、市場のリターンを予測するシグナルとして使われる可能性があるが、ボラティリティには当てはまらない。
我々は,新たな情報の到着に応じて,市場の変動を予測するための正確な分類器を開発した。
論文 参考訳(メタデータ) (2020-12-10T01:15:48Z) - Tracking Emotions: Intrinsic Motivation Grounded on Multi-Level
Prediction Error Dynamics [68.8204255655161]
目標達成に向けての進捗率と期待率の差が生じると、感情がどのように生じるかについて議論する。
自己生成的・動的目標に向けた行動を生成する本質的なモチベーションアーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-07-29T06:53:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。