論文の概要: Using Sentiment and Technical Analysis to Predict Bitcoin with Machine Learning
- arxiv url: http://arxiv.org/abs/2410.14532v1
- Date: Fri, 18 Oct 2024 15:13:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-21 14:24:08.916272
- Title: Using Sentiment and Technical Analysis to Predict Bitcoin with Machine Learning
- Title(参考訳): 知覚と技術分析を使って機械学習でBitcoinを予測する
- Authors: Arthur Emanuel de Oliveira Carosia,
- Abstract要約: 本研究は,暗号通貨予測における感情指標の重要性に関する予備研究である。
我々は、Fear & Greedy Index、市場感情の指標、技術分析指標、および機械学習アルゴリズムの可能性を組み合わせることで、Bitcoin価格を予測する新しいアプローチを提案する。
- 参考スコア(独自算出の注目度): 1.3053649021965603
- License:
- Abstract: Cryptocurrencies have gained significant attention in recent years due to their decentralized nature and potential for financial innovation. Thus, the ability to accurately predict its price has become a subject of great interest for investors, traders, and researchers. Some works in the literature show how Bitcoin's market sentiment correlates with its price fluctuations in the market. However, papers that consider the sentiment of the market associated with financial Technical Analysis indicators in order to predict Bitcoin's price are still scarce. In this paper, we present a novel approach for predicting Bitcoin price movements by combining the Fear & Greedy Index, a measure of market sentiment, Technical Analysis indicators, and the potential of Machine Learning algorithms. This work represents a preliminary study on the importance of sentiment metrics in cryptocurrency forecasting. Our initial experiments demonstrate promising results considering investment returns, surpassing the Buy & Hold baseline, and offering valuable insights about the combination of indicators of sentiment and market in a cryptocurrency prediction model.
- Abstract(参考訳): 暗号通貨は、その分散した性質と金融革新の可能性により、近年大きな注目を集めている。
このように、その価格を正確に予測する能力は、投資家、トレーダー、研究者にとって大きな関心の対象となっている。
この文献では、Bitcoinの市場感が市場価格の変動とどのように相関しているかが示されている。
しかし、Bitcoinの価格を予測するための金融技術分析指標に関連する市場の感情を考察する論文は依然として少ない。
本稿では,市場感情の指標であるFear & Greedy Index,Technical Analysis Indexs,および機械学習アルゴリズムの可能性を組み合わせることで,Bitcoin価格の変動を予測する新しい手法を提案する。
本研究は,暗号通貨予測における感情指標の重要性に関する予備研究である。
最初の実験では、投資リターンを考慮した有望な成果を示し、Buy & Holdベースラインを越え、暗号通貨の予測モデルで感情と市場の指標の組み合わせに関する貴重な洞察を提供する。
関連論文リスト
- Predicting Bitcoin Market Trends with Enhanced Technical Indicator Integration and Classification Models [6.39158540499473]
本研究では,暗号市場の方向性を予測するための分類に基づく機械学習モデルを提案する。
歴史的データと、移動平均収束分量、相対強度指数、ボリンジャーバンドなどの重要な技術指標を用いて訓練されている。
その結果、購入/販売信号の精度は92%を超えた。
論文 参考訳(メタデータ) (2024-10-09T14:29:50Z) - Cryptocurrency Price Forecasting Using XGBoost Regressor and Technical Indicators [2.038893829552158]
本研究では,暗号通貨の価格を予測するための機械学習手法を提案する。
我々は、XGBoost回帰モデルの訓練および供給のために、EMA(Exponential moving Avergence)やMACD( moving Avergence Divergence)といった重要な技術指標を活用している。
モデルの性能を様々なシミュレーションにより評価し,有望な結果を示す。
論文 参考訳(メタデータ) (2024-07-16T14:41:27Z) - Beyond Trend Following: Deep Learning for Market Trend Prediction [49.89480853499917]
我々は、将来の市場動向を予測するために人工知能と機械学習技術を使うことを提唱する。
これらの予測は、適切に実行されれば、リターンを増やし、損失を減らすことで資産運用者のパフォーマンスを向上させることができる。
論文 参考訳(メタデータ) (2024-06-10T11:42:30Z) - Interplay between Cryptocurrency Transactions and Online Financial
Forums [41.94295877935867]
本研究は、これらの暗号掲示板間の相互作用と暗号値の変動に関する研究に焦点をあてる。
これは、Bitcointalkフォーラムの活動がBTCの値のトレンドと直接的な関係を保っていることを示している。
この実験は、フォーラムデータが金融分野における特定の出来事を説明することを強調している。
論文 参考訳(メタデータ) (2023-11-27T16:25:28Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
長期的地平線上での多段階の株価予測は、ボラティリティの予測に不可欠である。
多段階の株価予測に対する現在の解決策は、主に単一段階の分類に基づく予測のために設計されている。
深層階層型変分オートコーダ(VAE)と拡散確率的手法を組み合わせてセック2seqの株価予測を行う。
本モデルでは, 予測精度と分散性の観点から, 最先端の解よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-18T16:21:15Z) - Social Media Sentiment Analysis for Cryptocurrency Market Prediction [0.0]
我々は、異なる感情指標がBitcoinの価格変動とどのように相関しているかを研究する。
モデルのうちの1つは、他の20以上の公的なモデルよりも優れています。
論文 参考訳(メタデータ) (2022-04-19T03:27:29Z) - A Sentiment Analysis Approach to the Prediction of Market Volatility [62.997667081978825]
金融ニュースとツイートから抽出された感情とFTSE100の動きの関係を調べました。
ニュース見出しから得られた感情は、市場のリターンを予測するシグナルとして使われる可能性があるが、ボラティリティには当てはまらない。
我々は,新たな情報の到着に応じて,市場の変動を予測するための正確な分類器を開発した。
論文 参考訳(メタデータ) (2020-12-10T01:15:48Z) - Taking Over the Stock Market: Adversarial Perturbations Against
Algorithmic Traders [47.32228513808444]
本稿では,敵対的学習手法を用いて,攻撃者がアルゴリズム取引システムに影響を与える現実的なシナリオを提案する。
入力ストリームに追加されると、我々の摂動は将来目に見えないデータポイントのトレーディングアルゴリズムを騙すことができることを示す。
論文 参考訳(メタデータ) (2020-10-19T06:28:05Z) - Real-Time Prediction of BITCOIN Price using Machine Learning Techniques
and Public Sentiment Analysis [0.0]
本研究の目的は、機械学習技術と感情分析により、USDにおけるBitcoinの予測可能な価格方向を決定することである。
TwitterとRedditは、大衆の感情を研究する研究者から大きな注目を集めている。
我々は、感情分析と機械学習の原則をTwitterやRedditの投稿から抽出したツイートに適用した。
論文 参考訳(メタデータ) (2020-06-18T15:40:11Z) - Pump and Dumps in the Bitcoin Era: Real Time Detection of Cryptocurrency Market Manipulations [50.521292491613224]
インターネット上のコミュニティによって組織されたポンプとダンプの詳細な分析を行う。
これらのコミュニティがどのように組織化され、どのように詐欺を行うかを観察します。
本研究では,不正行為をリアルタイムに検出する手法を提案する。
論文 参考訳(メタデータ) (2020-05-04T21:36:18Z) - Ascertaining price formation in cryptocurrency markets with DeepLearning [8.413339060443878]
本論文は,近年の株式市場予測にディープラーニングを用いた成功に触発されたものである。
暗号通貨市場の特徴を高周波で分析・提示する。
私たちは、Bitcoinと米ドルのライブ為替レートの中間価格運動の予測について、一貫した78%の精度を達成しました。
論文 参考訳(メタデータ) (2020-02-09T20:23:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。