The robustness condition for general disordered discrete time crystals, and subspace-thermal DTCs from phase transitions between different n-tuple DTCs
- URL: http://arxiv.org/abs/2409.02848v5
- Date: Tue, 29 Apr 2025 17:13:33 GMT
- Title: The robustness condition for general disordered discrete time crystals, and subspace-thermal DTCs from phase transitions between different n-tuple DTCs
- Authors: Hongye Yu, Tzu-Chieh Wei,
- Abstract summary: We propose a new Floquet time crystal model that responds in arbitrary multiples of the driving period.<n>Transitions between these time crystals with different periods give rise to a novel phase of matter that we call subspace-thermal discrete time crystals.
- Score: 0.46040036610482665
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a new Floquet time crystal model that responds in arbitrary multiples of the driving period. Such an $n$-tuple discrete time crystal is theoretically constructed by permuting spins in a disordered chain and is well suited for experimental implementations. Transitions between these time crystals with different periods give rise to a novel phase of matter that we call subspace-thermal discrete time crystals, where states within subspaces of definite charges are fully thermalized at an early time. However, the whole system still robustly responds to the periodic driving subharmonically, with a period being the greatest common divisor of the original two periods. Existing theoretical analysis from many-body localization cannot be used to understand the rigidity of such subspace-thermal time crystal phases. To resolve this, we develop a new theoretical framework for the robustness of DTCs from the perspective of the robust $2\pi/n$ quasi-energy gap. Its robustness is rigorously proved if the system satisfies a certain condition where the mixing length, defined by the Hamming distance of the symmetry charges, does not exceed a global threshold. The proof applies beyond the models considered here to other existing DTCs realized by kicking disordered systems, where conventional MBL-DTCs can be regarded as a special case of the subspace-thermal DTC with the subspace dimension being one, thus offering a systematic way to construct new discrete time crystal models. We also introduce the notion of DTC-charges that allow us to probe the observables that spontaneously break the time-translation symmetry in both the regular discrete time crystals and subspace-thermal discrete time crystals. Moreover, our discrete time crystal models can be generalized to systems with higher spin magnitudes or qudits, as well as to higher spatial dimensions.
Related papers
- Information scrambling and entanglement dynamics in Floquet Time Crystals [49.1574468325115]
We study the dynamics of out-of-time-ordered correlators (OTOCs) and entanglement of entropy as measures of information propagation in disordered systems.
arXiv Detail & Related papers (2024-11-20T17:18:42Z) - Bipartite Discrete Time Crystals on Decorated Lattices [0.0]
We study time-crystalline order in periodically driven quantum Ising models on disorder-free decorated lattices.
We show through finite entanglement scaling that the system has an exponentially long-lived subharmonic response in the thermodynamic limit.
Our results thus uncover a variety of time crystals which may be realized on current digital quantum processors and analog quantum simulators.
arXiv Detail & Related papers (2024-11-01T15:13:43Z) - Experimental Realization of Discrete Time Quasi-Crystals [2.574124686754315]
Floquet (periodically driven) systems can give rise to unique non-equilibrium phases of matter without equilibrium analogs.
We show that the multi-frequency nature of the quasi-periodic drive allows for the formation of diverse patterns associated with different discrete time quasi-crystalline phases.
arXiv Detail & Related papers (2024-03-26T16:29:03Z) - Dissipative time crystal in a strongly interacting Rydberg gas [14.07614057267722]
We report the experimental observation of such dissipative time crystalline order in a room-temperature atomic gas.
The observed limit cycles arise from the coexistence and competition between distinct Rydberg components.
The nondecaying autocorrelation of the oscillation, together with the robustness against temporal noises, indicate the establishment of true long-range temporal order.
arXiv Detail & Related papers (2023-05-31T17:44:32Z) - Formation of Tesseract Time Crystals on a Quantum Computer [0.0]
Floquet driving has revolutionized the field of condensed matter physics.
Recent focus has shifted towards discrete time crystals (DTCs)
We explore the theoretical predictions, experimental realizations, and emerging possibilities of utilizing DTCs on quantum computers.
arXiv Detail & Related papers (2023-05-17T01:00:13Z) - Colloquium: Quantum and Classical Discrete Time Crystals [0.0]
The spontaneous breaking of time translation symmetry has led to the discovery of a new phase of matter - the discrete time crystal.
This Colloquium reviews recent theoretical and experimental advances in the study of quantum and classical discrete time crystals.
arXiv Detail & Related papers (2023-05-15T18:00:02Z) - Clean two-dimensional Floquet time-crystal [68.8204255655161]
We consider the two-dimensional quantum Ising model, in absence of disorder, subject to periodic imperfect global spin flips.
We show by a combination of exact diagonalization and tensor-network methods that the system can sustain a spontaneously broken discrete time-translation symmetry.
We observe a non-perturbative change in the decay rate of the order parameter, which is related to the long-lived stability of the magnetic domains in 2D.
arXiv Detail & Related papers (2022-05-10T13:04:43Z) - The role of fluctuations in quantum and classical time crystals [58.720142291102135]
We study the role of fluctuations on the stability of the system and find no distinction between quantum and classical DTCs.
This allows us to probe the fluctuations in an experiment using two strongly coupled parametric resonators subject to classical noise.
arXiv Detail & Related papers (2022-03-10T19:00:01Z) - Topological space-time crystal [1.0152838128195467]
We introduce a new class of out-of-equilibrium noninteracting topological phases, the topological space-time crystals.
These are time-dependent quantum systems which do not have discrete spatial translation symmetries, but instead are invariant under discrete space-time translations.
arXiv Detail & Related papers (2022-01-10T19:00:02Z) - Genuine Multipartite Correlations in a Boundary Time Crystal [56.967919268256786]
We study genuine multipartite correlations (GMC's) in a boundary time crystal (BTC)
We analyze both (i) the structure (orders) of GMC's among the subsystems, as well as (ii) their build-up dynamics for an initially uncorrelated state.
arXiv Detail & Related papers (2021-12-21T20:25:02Z) - Fast Thermalization from the Eigenstate Thermalization Hypothesis [69.68937033275746]
Eigenstate Thermalization Hypothesis (ETH) has played a major role in understanding thermodynamic phenomena in closed quantum systems.
This paper establishes a rigorous link between ETH and fast thermalization to the global Gibbs state.
Our results explain finite-time thermalization in chaotic open quantum systems.
arXiv Detail & Related papers (2021-12-14T18:48:31Z) - Observation of Time-Crystalline Eigenstate Order on a Quantum Processor [80.17270167652622]
Quantum-body systems display rich phase structure in their low-temperature equilibrium states.
We experimentally observe an eigenstate-ordered DTC on superconducting qubits.
Results establish a scalable approach to study non-equilibrium phases of matter on current quantum processors.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Universal presence of time-crystalline phases and period-doubling
oscillations in one-dimensional Floquet topological insulators [2.3978553352626064]
We report a ubiquitous presence of topological Floquet time crystal (TFTC) in one-dimensional periodically-driven systems.
Our modeling of the time-crystalline 'ground state' can be easily realized in experimental platforms such as topological photonics and ultracold fields.
arXiv Detail & Related papers (2020-05-08T09:20:57Z) - Phase diagram and optimal control for n-tupling discrete time crystal [0.0]
In periodically driven systems, discrete time crystals (DTC) can be realized which have a periodicity that is n times the driving period.
In this work, we demonstrate that such DTC is robust against perturbations to the initial distribution of atoms.
arXiv Detail & Related papers (2020-04-30T17:31:08Z) - Observing localisation in a 2D quasicrystalline optical lattice [52.77024349608834]
We experimentally and numerically study the ground state of non- and weakly-interacting bosons in an eightfold symmetric optical lattice.
We find extended states for weak lattices but observe a localisation transition at a lattice depth of $V_0.78(2),E_mathrmrec$ for the non-interacting system.
arXiv Detail & Related papers (2020-01-29T15:54:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.