Physically constrained quantum clock-driven dynamics
- URL: http://arxiv.org/abs/2409.02857v2
- Date: Wed, 11 Sep 2024 15:33:13 GMT
- Title: Physically constrained quantum clock-driven dynamics
- Authors: Dario Cilluffo, Lea Lautenbacher, Giovanni Spaventa, Susana F. Huelga, Martin B. Plenio,
- Abstract summary: This paper describes a fully quantum description of the engine-clock dynamics within a realistic quantum framework.
It offers the possibility to address the deeper and more fundamental challenge of defining meaningful time operators in the realm of quantum mechanics.
- Score: 0.6990493129893112
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Thermal machines are physical systems specifically designed to make thermal energy available for practical use through state transformations in a cyclic process. This concept relies on the presence of an additional element equipped with a clock, controlling which interaction Hamiltonian between the system and the reservoirs must act at a certain time and that remains unaffected during this process. In the domain of quantum dynamics, there is substantial evidence to suggest that fulfilling this final condition is, in fact, impossible, except in ideal and far-from-reality cases. In this study we start from one such idealized condition and proceed to relax the primary approximations to make the model more realistic and less ideal. The main result is a fully quantum description of the engine-clock dynamics within a realistic quantum framework. Furthermore, this approach offers the possibility to address the deeper and more fundamental challenge of defining meaningful time operators in the realm of quantum mechanics from a different standpoint.
Related papers
- Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Stochastic Thermodynamics at the Quantum-Classical Boundary: A Self-Consistent Framework Based on Adiabatic-Response Theory [0.0]
Microscopic thermal machines promise to play an important role in future quantum technologies.
Making such devices widely applicable will require effective strategies to channel their output into easily accessible storage systems like classical degrees of freedom.
We develop a self-consistent theoretical framework that makes it possible to model such quantum-classical hybrid devices in a thermodynamically consistent manner.
arXiv Detail & Related papers (2024-04-15T20:13:42Z) - Variational quantum simulation using non-Gaussian continuous-variable
systems [39.58317527488534]
We present a continuous-variable variational quantum eigensolver compatible with state-of-the-art photonic technology.
The framework we introduce allows us to compare discrete and continuous variable systems without introducing a truncation of the Hilbert space.
arXiv Detail & Related papers (2023-10-24T15:20:07Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Variational quantum simulation of the quantum critical regime [0.0]
We propose a variational approach, which minimizes the variational free energy, to simulate and locate the quantum critical regime on a quantum computer.
Our work suggests a practical way as well as a first step for investigating quantum critical systems at finite temperatures on quantum devices with few qubits.
arXiv Detail & Related papers (2023-02-15T02:59:41Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Variational Quantum Simulations of Finite-Temperature Dynamical
Properties via Thermofield Dynamics [19.738342279357845]
We present a variational quantum simulation protocol based on the thermofield dynamics formalism.
Our approach is capable of simulating non-equilibrium phenomena which have not been previously explored with quantum computers.
arXiv Detail & Related papers (2022-06-11T17:22:55Z) - A Schmidt decomposition approach to quantum thermodynamics [0.0]
We propose a novel approach to describe the thermodynamics of arbitrary bipartite autonomous quantum systems.
This formalism provides a simple, exact and symmetrical framework for expressing the energetics between interacting systems.
arXiv Detail & Related papers (2022-05-13T22:38:56Z) - Dynamical purification and the emergence of quantum state designs from
the projected ensemble [0.0]
Quantum thermalization in a many-body system is defined by the approach of local subsystems towards a universal form.
Projected ensemble can mimic the behavior of a maximally entropic, uniformly random ensemble.
We show that absence of dynamical purification in the space-time dual dynamics yields exact state-designs for all moments $k$ at the same time.
arXiv Detail & Related papers (2022-04-28T17:19:32Z) - Gauge Quantum Thermodynamics of Time-local non-Markovian Evolutions [77.34726150561087]
We deal with a generic time-local non-Markovian master equation.
We define current and power to be process-dependent as in classical thermodynamics.
Applying the theory to quantum thermal engines, we show that gauge transformations can change the machine efficiency.
arXiv Detail & Related papers (2022-04-06T17:59:15Z) - From geometry to coherent dissipative dynamics in quantum mechanics [68.8204255655161]
We work out the case of finite-level systems, for which it is shown by means of the corresponding contact master equation.
We describe quantum decays in a 2-level system as coherent and continuous processes.
arXiv Detail & Related papers (2021-07-29T18:27:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.