RoboTwin: Dual-Arm Robot Benchmark with Generative Digital Twins (early version)
- URL: http://arxiv.org/abs/2409.02920v1
- Date: Wed, 4 Sep 2024 17:59:52 GMT
- Title: RoboTwin: Dual-Arm Robot Benchmark with Generative Digital Twins (early version)
- Authors: Yao Mu, Tianxing Chen, Shijia Peng, Zanxin Chen, Zeyu Gao, Yude Zou, Lunkai Lin, Zhiqiang Xie, Ping Luo,
- Abstract summary: This paper introduces RoboTwin, a novel benchmark dataset combining real-world teleoperated data with synthetic data from digital twins.
We present a innovative approach to creating digital twins using AI-generated content, transforming 2D images into detailed 3D models.
Our key contributions are: 1) the RoboTwin benchmark dataset, 2) an efficient real-to-simulation pipeline, and 3) the use of language models for automatic expert-level data generation.
- Score: 25.298789781487084
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Effective collaboration of dual-arm robots and their tool use capabilities are increasingly important areas in the advancement of robotics. These skills play a significant role in expanding robots' ability to operate in diverse real-world environments. However, progress is impeded by the scarcity of specialized training data. This paper introduces RoboTwin, a novel benchmark dataset combining real-world teleoperated data with synthetic data from digital twins, designed for dual-arm robotic scenarios. Using the COBOT Magic platform, we have collected diverse data on tool usage and human-robot interaction. We present a innovative approach to creating digital twins using AI-generated content, transforming 2D images into detailed 3D models. Furthermore, we utilize large language models to generate expert-level training data and task-specific pose sequences oriented toward functionality. Our key contributions are: 1) the RoboTwin benchmark dataset, 2) an efficient real-to-simulation pipeline, and 3) the use of language models for automatic expert-level data generation. These advancements are designed to address the shortage of robotic training data, potentially accelerating the development of more capable and versatile robotic systems for a wide range of real-world applications. The project page is available at https://robotwin-benchmark.github.io/early-version/
Related papers
- $π_0$: A Vision-Language-Action Flow Model for General Robot Control [77.32743739202543]
We propose a novel flow matching architecture built on top of a pre-trained vision-language model (VLM) to inherit Internet-scale semantic knowledge.
We evaluate our model in terms of its ability to perform tasks in zero shot after pre-training, follow language instructions from people, and its ability to acquire new skills via fine-tuning.
arXiv Detail & Related papers (2024-10-31T17:22:30Z) - RDT-1B: a Diffusion Foundation Model for Bimanual Manipulation [23.554917579133576]
We present Robotics Diffusion Transformer (RDT), a pioneering diffusion foundation model for bimanual manipulation.
RDT builds on diffusion models to effectively represent multi-modality, with innovative designs of a scalable Transformer.
We further introduce a Physically Interpretable Unified Action Space, which can unify the action representations of various robots.
arXiv Detail & Related papers (2024-10-10T12:33:46Z) - Semantically Controllable Augmentations for Generalizable Robot Learning [40.89398799604755]
Generalization to unseen real-world scenarios for robot manipulation requires exposure to diverse datasets during training.
We propose a generative augmentation framework for semantically controllable augmentations and rapidly multiplying robot datasets.
arXiv Detail & Related papers (2024-09-02T05:25:34Z) - Scaling Cross-Embodied Learning: One Policy for Manipulation, Navigation, Locomotion and Aviation [49.03165169369552]
By training a single policy across many different kinds of robots, a robot learning method can leverage much broader and more diverse datasets.
We propose CrossFormer, a scalable and flexible transformer-based policy that can consume data from any embodiment.
We demonstrate that the same network weights can control vastly different robots, including single and dual arm manipulation systems, wheeled robots, quadcopters, and quadrupeds.
arXiv Detail & Related papers (2024-08-21T17:57:51Z) - RoboScript: Code Generation for Free-Form Manipulation Tasks across Real
and Simulation [77.41969287400977]
This paper presents textbfRobotScript, a platform for a deployable robot manipulation pipeline powered by code generation.
We also present a benchmark for a code generation benchmark for robot manipulation tasks in free-form natural language.
We demonstrate the adaptability of our code generation framework across multiple robot embodiments, including the Franka and UR5 robot arms.
arXiv Detail & Related papers (2024-02-22T15:12:00Z) - AutoRT: Embodied Foundation Models for Large Scale Orchestration of Robotic Agents [109.3804962220498]
AutoRT is a system to scale up the deployment of operational robots in completely unseen scenarios with minimal human supervision.
We demonstrate AutoRT proposing instructions to over 20 robots across multiple buildings and collecting 77k real robot episodes via both teleoperation and autonomous robot policies.
We experimentally show that such "in-the-wild" data collected by AutoRT is significantly more diverse, and that AutoRT's use of LLMs allows for instruction following data collection robots that can align to human preferences.
arXiv Detail & Related papers (2024-01-23T18:45:54Z) - Scaling Robot Learning with Semantically Imagined Experience [21.361979238427722]
Recent advances in robot learning have shown promise in enabling robots to perform manipulation tasks.
One of the key contributing factors to this progress is the scale of robot data used to train the models.
We propose an alternative route and leverage text-to-image foundation models widely used in computer vision and natural language processing.
arXiv Detail & Related papers (2023-02-22T18:47:51Z) - RT-1: Robotics Transformer for Real-World Control at Scale [98.09428483862165]
We present a model class, dubbed Robotics Transformer, that exhibits promising scalable model properties.
We verify our conclusions in a study of different model classes and their ability to generalize as a function of the data size, model size, and data diversity based on a large-scale data collection on real robots performing real-world tasks.
arXiv Detail & Related papers (2022-12-13T18:55:15Z) - ExAug: Robot-Conditioned Navigation Policies via Geometric Experience
Augmentation [73.63212031963843]
We propose a novel framework, ExAug, to augment the experiences of different robot platforms from multiple datasets in diverse environments.
The trained policy is evaluated on two new robot platforms with three different cameras in indoor and outdoor environments with obstacles.
arXiv Detail & Related papers (2022-10-14T01:32:15Z) - Peer-Assisted Robotic Learning: A Data-Driven Collaborative Learning
Approach for Cloud Robotic Systems [26.01178673629753]
Peer-Assisted Robotic Learning (PARL) in robotics is inspired by the peer-assisted learning in cognitive psychology and pedagogy.
Data and models are shared by robots to the cloud after semantic computing and training locally.
Finally, fine tune this larger shared dataset in the cloud to local robots.
arXiv Detail & Related papers (2020-10-16T10:52:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.