Boundless: Generating Photorealistic Synthetic Data for Object Detection in Urban Streetscapes
- URL: http://arxiv.org/abs/2409.03022v2
- Date: Thu, 26 Sep 2024 21:15:26 GMT
- Title: Boundless: Generating Photorealistic Synthetic Data for Object Detection in Urban Streetscapes
- Authors: Mehmet Kerem Turkcan, Yuyang Li, Chengbo Zang, Javad Ghaderi, Gil Zussman, Zoran Kostic,
- Abstract summary: We introduce Boundless, a photo-realistic synthetic data generation system for object detection in dense urban streetscapes.
Boundless can replace massive real-world data collection and manual ground-truth object annotation (labeling)
We evaluate the performance of object detection models trained on the dataset generated by Boundless.
- Score: 7.948212109423146
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce Boundless, a photo-realistic synthetic data generation system for enabling highly accurate object detection in dense urban streetscapes. Boundless can replace massive real-world data collection and manual ground-truth object annotation (labeling) with an automated and configurable process. Boundless is based on the Unreal Engine 5 (UE5) City Sample project with improvements enabling accurate collection of 3D bounding boxes across different lighting and scene variability conditions. We evaluate the performance of object detection models trained on the dataset generated by Boundless when used for inference on a real-world dataset acquired from medium-altitude cameras. We compare the performance of the Boundless-trained model against the CARLA-trained model and observe an improvement of 7.8 mAP. The results we achieved support the premise that synthetic data generation is a credible methodology for training/fine-tuning scalable object detection models for urban scenes.
Related papers
- Synthetica: Large Scale Synthetic Data for Robot Perception [21.415878105900187]
We present Synthetica, a method for large-scale synthetic data generation for training robust state estimators.
This paper focuses on the task of object detection, an important problem which can serve as the front-end for most state estimation problems.
We leverage data from a ray-tracing, generating 2.7 million images, to train highly accurate real-time detection transformers.
We demonstrate state-of-the-art performance on the task of object detection while having detectors that run at 50-100Hz which is 9 times faster than the prior SOTA.
arXiv Detail & Related papers (2024-10-28T15:50:56Z) - Enhancing Generalizability of Representation Learning for Data-Efficient 3D Scene Understanding [50.448520056844885]
We propose a generative Bayesian network to produce diverse synthetic scenes with real-world patterns.
A series of experiments robustly display our method's consistent superiority over existing state-of-the-art pre-training approaches.
arXiv Detail & Related papers (2024-06-17T07:43:53Z) - Improving Object Detector Training on Synthetic Data by Starting With a Strong Baseline Methodology [0.14980193397844666]
We propose a methodology for improving the performance of a pre-trained object detector when training on synthetic data.
Our approach focuses on extracting the salient information from synthetic data without forgetting useful features learned from pre-training on real images.
arXiv Detail & Related papers (2024-05-30T08:31:01Z) - Domain-Transferred Synthetic Data Generation for Improving Monocular Depth Estimation [9.812476193015488]
We propose a method of data generation in simulation using 3D synthetic environments and CycleGAN domain transfer.
We compare this method of data generation to the popular NYUDepth V2 dataset by training a depth estimation model based on the DenseDepth structure using different training sets of real and simulated data.
We evaluate the performance of the models on newly collected images and LiDAR depth data from a Husky robot to verify the generalizability of the approach and show that GAN-transformed data can serve as an effective alternative to real-world data, particularly in depth estimation.
arXiv Detail & Related papers (2024-05-02T09:21:10Z) - Multi-Modal Dataset Acquisition for Photometrically Challenging Object [56.30027922063559]
This paper addresses the limitations of current datasets for 3D vision tasks in terms of accuracy, size, realism, and suitable imaging modalities for photometrically challenging objects.
We propose a novel annotation and acquisition pipeline that enhances existing 3D perception and 6D object pose datasets.
arXiv Detail & Related papers (2023-08-21T10:38:32Z) - CarPatch: A Synthetic Benchmark for Radiance Field Evaluation on Vehicle
Components [77.33782775860028]
We introduce CarPatch, a novel synthetic benchmark of vehicles.
In addition to a set of images annotated with their intrinsic and extrinsic camera parameters, the corresponding depth maps and semantic segmentation masks have been generated for each view.
Global and part-based metrics have been defined and used to evaluate, compare, and better characterize some state-of-the-art techniques.
arXiv Detail & Related papers (2023-07-24T11:59:07Z) - Exploring the Effectiveness of Dataset Synthesis: An application of
Apple Detection in Orchards [68.95806641664713]
We explore the usability of Stable Diffusion 2.1-base for generating synthetic datasets of apple trees for object detection.
We train a YOLOv5m object detection model to predict apples in a real-world apple detection dataset.
Results demonstrate that the model trained on generated data is slightly underperforming compared to a baseline model trained on real-world images.
arXiv Detail & Related papers (2023-06-20T09:46:01Z) - Robust Category-Level 3D Pose Estimation from Synthetic Data [17.247607850702558]
We introduce SyntheticP3D, a new synthetic dataset for object pose estimation generated from CAD models.
We propose a novel approach (CC3D) for training neural mesh models that perform pose estimation via inverse rendering.
arXiv Detail & Related papers (2023-05-25T14:56:03Z) - TRoVE: Transforming Road Scene Datasets into Photorealistic Virtual
Environments [84.6017003787244]
This work proposes a synthetic data generation pipeline to address the difficulties and domain-gaps present in simulated datasets.
We show that using annotations and visual cues from existing datasets, we can facilitate automated multi-modal data generation.
arXiv Detail & Related papers (2022-08-16T20:46:08Z) - Detection and Segmentation of Custom Objects using High Distraction
Photorealistic Synthetic Data [0.5076419064097732]
We show a straightforward and useful methodology for performing instance segmentation using synthetic data.
The goal is to achieve high performance on manually-gathered and annotated real-world data of custom objects.
This white-paper provides strong evidence that photorealistic simulated data can be used in practical real world applications.
arXiv Detail & Related papers (2020-07-28T16:33:42Z) - Transferable Active Grasping and Real Embodied Dataset [48.887567134129306]
We show how to search for feasible viewpoints for grasping by the use of hand-mounted RGB-D cameras.
A practical 3-stage transferable active grasping pipeline is developed, that is adaptive to unseen clutter scenes.
In our pipeline, we propose a novel mask-guided reward to overcome the sparse reward issue in grasping and ensure category-irrelevant behavior.
arXiv Detail & Related papers (2020-04-28T08:15:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.