論文の概要: Leveraging Interpretability in the Transformer to Automate the Proactive Scaling of Cloud Resources
- arxiv url: http://arxiv.org/abs/2409.03103v1
- Date: Wed, 4 Sep 2024 22:03:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 22:55:47.824938
- Title: Leveraging Interpretability in the Transformer to Automate the Proactive Scaling of Cloud Resources
- Title(参考訳): トランスフォーマーの解釈可能性を活用してクラウドリソースの積極的なスケーリングを自動化する
- Authors: Amadou Ba, Pavithra Harsha, Chitra Subramanian,
- Abstract要約: 我々は、エンドツーエンドのレイテンシ、フロントエンドレベルの要求、リソース利用の関係をキャプチャするモデルを開発する。
次に、開発したモデルを使用して、エンドツーエンドのレイテンシを予測します。
マイクロサービスベースのアプリケーションのメリットを示し、デプロイメントのロードマップを提供します。
- 参考スコア(独自算出の注目度): 1.1470070927586018
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Modern web services adopt cloud-native principles to leverage the advantages of microservices. To consistently guarantee high Quality of Service (QoS) according to Service Level Agreements (SLAs), ensure satisfactory user experiences, and minimize operational costs, each microservice must be provisioned with the right amount of resources. However, accurately provisioning microservices with adequate resources is complex and depends on many factors, including workload intensity and the complex interconnections between microservices. To address this challenge, we develop a model that captures the relationship between an end-to-end latency, requests at the front-end level, and resource utilization. We then use the developed model to predict the end-to-end latency. Our solution leverages the Temporal Fusion Transformer (TFT), an attention-based architecture equipped with interpretability features. When the prediction results indicate SLA non-compliance, we use the feature importance provided by the TFT as covariates in Kernel Ridge Regression (KRR), with the response variable being the desired latency, to learn the parameters associated with the feature importance. These learned parameters reflect the adjustments required to the features to ensure SLA compliance. We demonstrate the merit of our approach with a microservice-based application and provide a roadmap to deployment.
- Abstract(参考訳): 現代のWebサービスは、マイクロサービスの利点を活用するためにクラウドネイティブな原則を採用しています。
サービスレベル合意(SLA)に従って高い品質のサービス(QoS)を一貫して保証し、満足なユーザエクスペリエンスを確保し、運用コストを最小化するためには、各マイクロサービスに適切なリソースを供給する必要があります。
しかし、適切なリソースでマイクロサービスを正確にプロビジョニングするのは複雑で、ワークロードの強度やマイクロサービス間の複雑な相互接続など、多くの要因に依存します。
この課題に対処するために、エンドツーエンドのレイテンシ、フロントエンドレベルの要求、リソース利用の関係をキャプチャするモデルを開発する。
次に、開発したモデルを使用して、エンドツーエンドのレイテンシを予測します。
我々のソリューションは、解釈可能性機能を備えた注目型アーキテクチャであるTFT(Temporal Fusion Transformer)を活用している。
予測結果がSLA非準拠を示す場合,KRR(Kernel Ridge Regression)の共変量としてTFTが提供する特徴重要度を用いて,応答変数を所望のレイテンシとして,特徴重要度に関連するパラメータを学習する。
これらの学習されたパラメータは、SLA準拠を保証するために機能に必要な調整を反映します。
マイクロサービスベースのアプリケーションでアプローチのメリットを実証し、デプロイメントのロードマップを提供します。
関連論文リスト
- Online Client Scheduling and Resource Allocation for Efficient Federated Edge Learning [9.451084740123198]
フェデレートラーニング(FL)は、エッジデバイスが生データを共有せずに、機械学習モデルを協調的にトレーニングすることを可能にする。
しかし、電力、帯域幅などの制約のあるリソースを持つモバイルエッジネットワーク上にFLをデプロイすることは、高いトレーニングレイテンシと低いモデルの精度に悩まされる。
本稿では,資源制約と不確実性の下で,モバイルエッジネットワーク上でのFLの最適なクライアントスケジューリングとリソース割り当てについて検討する。
論文 参考訳(メタデータ) (2024-09-29T01:56:45Z) - SpaFL: Communication-Efficient Federated Learning with Sparse Models and Low computational Overhead [75.87007729801304]
SpaFL: 計算オーバーヘッドの少ないスパースモデル構造を最適化する通信効率のよいFLフレームワークを提案する。
実験により、スパースベースラインに比べて通信やコンピューティングリソースをはるかに少なくし、精度を向上することが示された。
論文 参考訳(メタデータ) (2024-06-01T13:10:35Z) - Client Orchestration and Cost-Efficient Joint Optimization for
NOMA-Enabled Hierarchical Federated Learning [55.49099125128281]
半同期クラウドモデルアグリゲーションの下で非直交多重アクセス(NOMA)を実現するHFLシステムを提案する。
提案手法は,HFLの性能改善と総コスト削減に関するベンチマークよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-11-03T13:34:44Z) - DeepScaler: Holistic Autoscaling for Microservices Based on
Spatiotemporal GNN with Adaptive Graph Learning [4.128665560397244]
本稿では,ディープラーニングに基づく総合的オートスケーリング手法であるDeepScalerを提案する。
サービスレベルの合意(SLA)とコスト効率を最適化するために、サービス依存関係に対処することに焦点を当てています。
実験により,本手法はマイクロサービスのより効率的な自動スケーリング機構を実装していることが示された。
論文 参考訳(メタデータ) (2023-09-02T08:22:21Z) - Adaptive Federated Pruning in Hierarchical Wireless Networks [69.6417645730093]
Federated Learning(FL)は、サーバがプライベートデータセットにアクセスすることなく、複数のデバイスによって更新されたモデルを集約する、プライバシ保護の分散学習フレームワークである。
本稿では,無線ネットワークにおけるHFLのモデルプルーニングを導入し,ニューラルネットワークの規模を小さくする。
提案するHFLは,モデルプルーニングを伴わないHFLと比較して学習精度が良く,通信コストが約50%削減できることを示す。
論文 参考訳(メタデータ) (2023-05-15T22:04:49Z) - TPMCF: Temporal QoS Prediction using Multi-Source Collaborative Features [0.5161531917413706]
時間的予測は、時間とともに適切なサービスを特定するために不可欠である。
近年の手法は, 様々な制約により, 所望の精度が得られなかった。
本稿では,マルチソース協調機能を用いた時間予測のためのスケーラブルな戦略を提案する。
論文 参考訳(メタデータ) (2023-03-30T06:49:53Z) - Differentially Private Deep Q-Learning for Pattern Privacy Preservation
in MEC Offloading [76.0572817182483]
攻撃者は、エッジサーバ(ES)のキュー情報とユーザの使用パターンを推測するために、オフロードの決定を盗み取ることができる。
パターンプライバシ(PP)を維持しつつ,レイテンシ,ESのエネルギー消費,タスク削減率を両立させるオフロード戦略を提案する。
そこで我々はDP-DQOアルゴリズムを開発し,PP問題にノイズを注入することでこの問題に対処する。
論文 参考訳(メタデータ) (2023-02-09T12:50:18Z) - An ADMM-Incorporated Latent Factorization of Tensors Method for QoS
Prediction [2.744577504320494]
Quality of Service(QoS)は、サービス消費者が要求するサービスに関して、Webサービスのパフォーマンスを動的に記述します。
テンソルの潜在因子分解は高次元およびスパーステンソルの時間的パターンを発見するのに非常に効果的である。
現在のLFTモデルは低い収束率に悩まされており、降圧器の影響をほとんど考慮していない。
論文 参考訳(メタデータ) (2022-12-03T12:35:48Z) - A Graph Neural Networks based Framework for Topology-Aware Proactive SLA
Management in a Latency Critical NFV Application Use-case [0.34376560669160383]
5Gと6Gの最近の進歩は、ネットワークシリーズ(NFV)によって実現される遅延クリティカルなアプリケーションの出現につながっている。
本稿では,グラフニューラルネットワーク(GNN)と深層強化学習(DRL)を活用して,効率性と信頼性のトレードオフをバランスさせる,積極的なSLA管理フレームワークを提案する。
論文 参考訳(メタデータ) (2022-11-10T23:22:05Z) - Federated Learning with Correlated Data: Taming the Tail for Age-Optimal
Industrial IoT [55.62157530259969]
本稿では,ピークAoI要求に基づくセンサの送信電力最小化と待ち時間に対する確率的制約について検討する。
本稿では,センサのトレーニングデータ間の相関を考慮した局所モデル選択手法を提案する。
数値計算の結果,送信電力,ピークAoI,遅延尾部分布のトレードオフが示された。
論文 参考訳(メタデータ) (2021-08-17T08:38:31Z) - Adaptive Subcarrier, Parameter, and Power Allocation for Partitioned
Edge Learning Over Broadband Channels [69.18343801164741]
パーティショニングエッジ学習(PARTEL)は、無線ネットワークにおいてよく知られた分散学習手法であるパラメータサーバトレーニングを実装している。
本稿では、いくつかの補助変数を導入してParticleELを用いてトレーニングできるディープニューラルネットワーク(DNN)モデルについて考察する。
論文 参考訳(メタデータ) (2020-10-08T15:27:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。