論文の概要: MaterialBENCH: Evaluating College-Level Materials Science Problem-Solving Abilities of Large Language Models
- arxiv url: http://arxiv.org/abs/2409.03161v1
- Date: Thu, 5 Sep 2024 01:36:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 22:33:03.240294
- Title: MaterialBENCH: Evaluating College-Level Materials Science Problem-Solving Abilities of Large Language Models
- Title(参考訳): MaterialBENCH:大学レベルの物質科学評価-大規模言語モデルの解答能力
- Authors: Michiko Yoshitake, Yuta Suzuki, Ryo Igarashi, Yoshitaka Ushiku, Keisuke Nagato,
- Abstract要約: 材料科学分野における大規模言語モデル(LLM)のための大学レベルのベンチマークデータセットであるMaterialBENCHを構築した。
このデータセットは、大学教科書に基づく問題解決ペアで構成されている。
- 参考スコア(独自算出の注目度): 7.559885439354167
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: A college-level benchmark dataset for large language models (LLMs) in the materials science field, MaterialBENCH, is constructed. This dataset consists of problem-answer pairs, based on university textbooks. There are two types of problems: one is the free-response answer type, and the other is the multiple-choice type. Multiple-choice problems are constructed by adding three incorrect answers as choices to a correct answer, so that LLMs can choose one of the four as a response. Most of the problems for free-response answer and multiple-choice types overlap except for the format of the answers. We also conduct experiments using the MaterialBENCH on LLMs, including ChatGPT-3.5, ChatGPT-4, Bard (at the time of the experiments), and GPT-3.5 and GPT-4 with the OpenAI API. The differences and similarities in the performance of LLMs measured by the MaterialBENCH are analyzed and discussed. Performance differences between the free-response type and multiple-choice type in the same models and the influence of using system massages on multiple-choice problems are also studied. We anticipate that MaterialBENCH will encourage further developments of LLMs in reasoning abilities to solve more complicated problems and eventually contribute to materials research and discovery.
- Abstract(参考訳): 材料科学分野における大規模言語モデル(LLM)のための大学レベルのベンチマークデータセットであるMaterialBENCHを構築した。
このデータセットは、大学教科書に基づく問題解決ペアで構成されている。
1つは自由応答型であり、もう1つは多重選択型である。
複数選択問題は、3つの誤った答えを正しい答えに選択することで構成され、LCMは4つのうちの1つを応答として選択できる。
自由応答型と複数選択型の問題のほとんどは、回答の形式を除いて重複している。
また、ChatGPT-3.5、ChatGPT-4、Bard(実験当時)、OpenAI APIによるGPT-3.5およびGPT-4など、LCM上でのMaterialBENCHを用いた実験を行った。
材料BENCHで測定したLLMの性能の相違と類似性について検討した。
また,同モデルにおける自由応答型と多重選択型の性能差と,マルチ選択問題に対するシステムマッサージの使用の影響についても検討した。
MaterialsBENCHは、より複雑な問題を解決する能力の推論においてLLMのさらなる発展を促進し、最終的には材料研究や発見に貢献することを期待している。
関連論文リスト
- CLR-Bench: Evaluating Large Language Models in College-level Reasoning [17.081788240112417]
大規模言語モデル(LLM)は、様々な言語理解タスクで顕著な性能を示した。
複雑な大学レベルの推論において,LLMを包括的に評価するためにCLR-Benchを提案する。
論文 参考訳(メタデータ) (2024-10-23T04:55:08Z) - AHP-Powered LLM Reasoning for Multi-Criteria Evaluation of Open-Ended Responses [26.850344968677582]
本研究では,大規模言語モデルを用いたオープンエンド質問に対する回答評価手法を提案する。
また,ChatGPT-3.5-turbo と GPT-4 の2つのデータセットについて実験を行った。
以上の結果から,本研究のアプローチは4つの基準線よりも人間の判断と密接に一致していることが示唆された。
論文 参考訳(メタデータ) (2024-10-02T05:22:07Z) - Comparison of Large Language Models for Generating Contextually Relevant Questions [6.080820450677854]
GPT-3.5、Llama 2-Chat 13B、T5 XXLは、微調整なしで大学のスライドテキストから質問を生成する能力を比較する。
その結果, GPT-3.5 と Llama 2-Chat 13B は T5 XXL よりも小さなマージン, 特に明瞭度と質問応答アライメントで優れていた。
論文 参考訳(メタデータ) (2024-07-30T06:23:59Z) - Multi-LLM QA with Embodied Exploration [55.581423861790945]
未知環境における質問応答におけるマルチエンボディードLEMエクスプローラ(MELE)の利用について検討する。
複数のLSMベースのエージェントが独立して家庭用環境に関する質問を探索し、回答する。
各問合せに対して1つの最終回答を生成するために,異なるアグリゲーション手法を解析する。
論文 参考訳(メタデータ) (2024-06-16T12:46:40Z) - Open-LLM-Leaderboard: From Multi-choice to Open-style Questions for LLMs Evaluation, Benchmark, and Arena [23.264049073539663]
大規模言語モデル(LLM)を評価するために、MCQ(Multiple-choice Question)が頻繁に使用される。
LLMは、A/B/C/Dのような特定の解選択IDを本質的に好んでいるかもしれない。
本研究は,これらの課題に対処し,完全にオープンな質問を通じて新たなLCM評価ベンチマークを確立することを目的としている。
論文 参考訳(メタデータ) (2024-06-11T17:59:47Z) - Crafting Interpretable Embeddings by Asking LLMs Questions [89.49960984640363]
大規模言語モデル(LLM)は、自然言語処理タスクの増大に対して、テキスト埋め込みを急速に改善した。
質問応答埋め込み (QA-Emb) を導入し, 各特徴がLLMに対して質問された質問に対する回答を表す。
我々はQA-Embを用いて、言語刺激に対するfMRIボクセル応答を予測するための解釈可能なモデルを柔軟に生成する。
論文 参考訳(メタデータ) (2024-05-26T22:30:29Z) - Don't Just Say "I don't know"! Self-aligning Large Language Models for Responding to Unknown Questions with Explanations [70.6395572287422]
自己調整法は,回答を拒否するだけでなく,未知の質問の解答不能を説明できる。
我々は, LLM自体を微調整し, 未知の質問に対する応答を所望の通りに調整するために, 偏差駆動による自己計算を行い, 有資格データを選択する。
論文 参考訳(メタデータ) (2024-02-23T02:24:36Z) - SceMQA: A Scientific College Entrance Level Multimodal Question
Answering Benchmark [42.91902601376494]
本稿では,SceMQAについて紹介する。SceMQAは,大学入学レベルでの科学的マルチモーダル質問応答のための新しいベンチマークである。
SceMQAは数学、物理学、化学、生物学などの中核的な科学分野に焦点を当てている。
複数選択と自由応答の混在を特徴とし、AIモデルの能力を総合的に評価する。
論文 参考訳(メタデータ) (2024-02-06T19:16:55Z) - FreshLLMs: Refreshing Large Language Models with Search Engine
Augmentation [92.43001160060376]
本研究では,現在の世界知識をテストする質問に答える文脈において,大規模言語モデル(LLM)の事実性について検討する。
多様な質問や回答のタイプを含む新しい動的QAベンチマークであるFreshQAを紹介する。
我々は,2モード評価法により,閉じたLLMとオープンソースのLLMの多種多様な配列をベンチマークし,その正しさと幻覚の両面を計測する。
これらの結果に触発されたFreshPromptは、FreshQA上でのLLMの性能を大幅に向上させる単純な数ショットプロンプトである。
論文 参考訳(メタデータ) (2023-10-05T00:04:12Z) - An Empirical Comparison of LM-based Question and Answer Generation
Methods [79.31199020420827]
質問と回答の生成(QAG)は、コンテキストが与えられた質問と回答のペアのセットを生成することで構成される。
本稿では,シーケンス・ツー・シーケンス言語モデル(LM)を微調整する3つの異なるQAG手法を用いて,ベースラインを確立する。
実験により、学習時間と推論時間の両方で計算的に軽量なエンドツーエンドQAGモデルが一般に堅牢であり、他のより複雑なアプローチよりも優れていることが示された。
論文 参考訳(メタデータ) (2023-05-26T14:59:53Z) - Learn to Explain: Multimodal Reasoning via Thought Chains for Science
Question Answering [124.16250115608604]
本稿では,SQA(Science Question Answering)について紹介する。SQA(Science Question Answering)は,21万のマルチモーダルな複数選択質問と多様な科学トピックと,それに対応する講義や説明による回答の注釈からなる新しいベンチマークである。
また,SQAでは,数ショットのGPT-3では1.20%,微調整のUnifiedQAでは3.99%の改善が見られた。
我々の分析は、人間に似た言語モデルは、より少ないデータから学習し、わずか40%のデータで同じパフォーマンスを達成するのに、説明の恩恵を受けることを示している。
論文 参考訳(メタデータ) (2022-09-20T07:04:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。