InfraLib: Enabling Reinforcement Learning and Decision Making for Large Scale Infrastructure Management
- URL: http://arxiv.org/abs/2409.03167v1
- Date: Thu, 5 Sep 2024 01:54:29 GMT
- Title: InfraLib: Enabling Reinforcement Learning and Decision Making for Large Scale Infrastructure Management
- Authors: Pranay Thangeda, Trevor S. Betz, Michael N. Grussing, Melkior Ornik,
- Abstract summary: InfraLib is a comprehensive framework for modeling and analyzing infrastructure management problems.
It supports practical functionality such as modeling component unavailability, cyclical budgets, and catastrophic failures.
We demonstrate InfraLib's capabilities through case studies on a real-world road network and a synthetic benchmark with 100,000 components.
- Score: 1.0499611180329806
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Efficient management of infrastructure systems is crucial for economic stability, sustainability, and public safety. However, infrastructure management is challenging due to the vast scale of systems, stochastic deterioration of components, partial observability, and resource constraints. While data-driven approaches like reinforcement learning (RL) offer a promising avenue for optimizing management policies, their application to infrastructure has been limited by the lack of suitable simulation environments. We introduce InfraLib, a comprehensive framework for modeling and analyzing infrastructure management problems. InfraLib employs a hierarchical, stochastic approach to realistically model infrastructure systems and their deterioration. It supports practical functionality such as modeling component unavailability, cyclical budgets, and catastrophic failures. To facilitate research, InfraLib provides tools for expert data collection, simulation-driven analysis, and visualization. We demonstrate InfraLib's capabilities through case studies on a real-world road network and a synthetic benchmark with 100,000 components.
Related papers
- A Novel Framework for Analyzing Structural Transformation in Data-Constrained Economies Using Bayesian Modeling and Machine Learning [0.0]
The shift from agrarian economies to more diversified industrial and service-based systems is a key driver of economic development.
In low- and middle-income countries (LMICs), data scarcity and unreliability hinder accurate assessments of this process.
This paper presents a novel statistical framework designed to address these challenges by integrating Bayesian hierarchical modeling, machine learning-based data imputation, and factor analysis.
arXiv Detail & Related papers (2024-09-25T08:39:41Z) - Securing the Open RAN Infrastructure: Exploring Vulnerabilities in Kubernetes Deployments [60.51751612363882]
We investigate the security implications of and software-based Open Radio Access Network (RAN) systems.
We highlight the presence of potential vulnerabilities and misconfigurations in the infrastructure supporting the Near Real-Time RAN Controller (RIC) cluster.
arXiv Detail & Related papers (2024-05-03T07:18:45Z) - Detecting Vulnerable Nodes in Urban Infrastructure Interdependent
Network [30.78792992230233]
We model the interdependent network as a heterogeneous graph and propose a system based on graph neural network with reinforcement learning.
The presented system leverages deep learning techniques to understand and analyze the heterogeneous graph, which enables us to capture the risk of cascade failure and discover vulnerable infrastructures of cities.
arXiv Detail & Related papers (2023-07-19T09:53:56Z) - Bringing AI to the edge: A formal M&S specification to deploy effective
IoT architectures [0.0]
The Internet of Things is transforming our society, providing new services that improve the quality of life and resource management.
These applications are based on ubiquitous networks of multiple distributed devices, with limited computing resources and power.
New architectures such as fog computing are emerging to bring computing infrastructure closer to data sources.
arXiv Detail & Related papers (2023-05-11T21:29:58Z) - IIVA: A Simulation Based Generalized Framework for Interdependent
Infrastructure Vulnerability Assessment [0.0]
This paper proposes a novel infrastructure vulnerability assessment framework that accounts for: various types of infrastructure interdependencies.
It is observed that higher the initial failure rate of the components, higher is the vulnerability of the infrastructure.
arXiv Detail & Related papers (2022-12-13T20:37:03Z) - Distributed intelligence on the Edge-to-Cloud Continuum: A systematic
literature review [62.997667081978825]
This review aims at providing a comprehensive vision of the main state-of-the-art libraries and frameworks for machine learning and data analytics available today.
The main simulation, emulation, deployment systems, and testbeds for experimental research on the Edge-to-Cloud Continuum available today are also surveyed.
arXiv Detail & Related papers (2022-04-29T08:06:05Z) - On Telecommunication Service Imbalance and Infrastructure Resource
Deployment [95.80185574417428]
We propose a fine-grained and easy-to-compute imbalance index, aiming to quantitatively link the relation among telecommunication service imbalance, telecommunication infrastructure, and demographic distribution.
Based on this index, we also propose an infrastructure resource deployment strategy by minimizing the average imbalance index of any geographical segment.
arXiv Detail & Related papers (2021-04-08T17:45:32Z) - A Framework for Energy and Carbon Footprint Analysis of Distributed and
Federated Edge Learning [48.63610479916003]
This article breaks down and analyzes the main factors that influence the environmental footprint of distributed learning policies.
It models both vanilla and decentralized FL policies driven by consensus.
Results show that FL allows remarkable end-to-end energy savings (30%-40%) for wireless systems characterized by low bit/Joule efficiency.
arXiv Detail & Related papers (2021-03-18T16:04:42Z) - Edge-assisted Democratized Learning Towards Federated Analytics [67.44078999945722]
We show the hierarchical learning structure of the proposed edge-assisted democratized learning mechanism, namely Edge-DemLearn.
We also validate Edge-DemLearn as a flexible model training mechanism to build a distributed control and aggregation methodology in regions.
arXiv Detail & Related papers (2020-12-01T11:46:03Z) - KrakN: Transfer Learning framework for thin crack detection in
infrastructure maintenance [0.0]
Currently applied methods are outdated, labour-intensive and inaccurate.
We propose to utilize custom made framework -- KrakN, to overcome these limiting factors.
It enables the development of unique infrastructure defects detectors on digital images, achieving the accuracy of above 90%.
arXiv Detail & Related papers (2020-04-26T09:57:36Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
We first summarize how to apply data-driven supervised deep learning and deep reinforcement learning in URLLC.
To address these open problems, we develop a multi-level architecture that enables device intelligence, edge intelligence, and cloud intelligence for URLLC.
arXiv Detail & Related papers (2020-02-22T14:38:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.