InfraLib: Enabling Reinforcement Learning and Decision Making for Large Scale Infrastructure Management
- URL: http://arxiv.org/abs/2409.03167v1
- Date: Thu, 5 Sep 2024 01:54:29 GMT
- Title: InfraLib: Enabling Reinforcement Learning and Decision Making for Large Scale Infrastructure Management
- Authors: Pranay Thangeda, Trevor S. Betz, Michael N. Grussing, Melkior Ornik,
- Abstract summary: InfraLib is a comprehensive framework for modeling and analyzing infrastructure management problems.
It supports practical functionality such as modeling component unavailability, cyclical budgets, and catastrophic failures.
We demonstrate InfraLib's capabilities through case studies on a real-world road network and a synthetic benchmark with 100,000 components.
- Score: 1.0499611180329806
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Efficient management of infrastructure systems is crucial for economic stability, sustainability, and public safety. However, infrastructure management is challenging due to the vast scale of systems, stochastic deterioration of components, partial observability, and resource constraints. While data-driven approaches like reinforcement learning (RL) offer a promising avenue for optimizing management policies, their application to infrastructure has been limited by the lack of suitable simulation environments. We introduce InfraLib, a comprehensive framework for modeling and analyzing infrastructure management problems. InfraLib employs a hierarchical, stochastic approach to realistically model infrastructure systems and their deterioration. It supports practical functionality such as modeling component unavailability, cyclical budgets, and catastrophic failures. To facilitate research, InfraLib provides tools for expert data collection, simulation-driven analysis, and visualization. We demonstrate InfraLib's capabilities through case studies on a real-world road network and a synthetic benchmark with 100,000 components.
Related papers
- Microservice Deployment in Space Computing Power Networks via Robust Reinforcement Learning [43.96374556275842]
It is important to provide reliable real-time remote sensing inference services to meet the low-latency requirements.
This paper presents a remote sensing artificial intelligence applications deployment framework designed for Low Earth Orbit satellite constellations.
arXiv Detail & Related papers (2025-01-08T16:55:04Z) - Multi-agent deep reinforcement learning with centralized training and
decentralized execution for transportation infrastructure management [0.0]
We present a multi-agent Deep Reinforcement Learning (DRL) framework for managing large transportation infrastructure systems over their life-cycle.
Life-cycle management of such engineering systems is a computationally intensive task, requiring appropriate sequential inspection and maintenance decisions.
arXiv Detail & Related papers (2024-01-23T02:52:36Z) - Accountability in Offline Reinforcement Learning: Explaining Decisions
with a Corpus of Examples [70.84093873437425]
This paper introduces the Accountable Offline Controller (AOC) that employs the offline dataset as the Decision Corpus.
AOC operates effectively in low-data scenarios, can be extended to the strictly offline imitation setting, and displays qualities of both conservation and adaptability.
We assess AOC's performance in both simulated and real-world healthcare scenarios, emphasizing its capability to manage offline control tasks with high levels of performance while maintaining accountability.
arXiv Detail & Related papers (2023-10-11T17:20:32Z) - Adaptive Resource Allocation for Virtualized Base Stations in O-RAN with Online Learning [55.08287089554127]
Open Radio Access Network systems, with their base stations (vBSs), offer operators the benefits of increased flexibility, reduced costs, vendor diversity, and interoperability.
We propose an online learning algorithm that balances the effective throughput and vBS energy consumption, even under unforeseeable and "challenging'' environments.
We prove the proposed solutions achieve sub-linear regret, providing zero average optimality gap even in challenging environments.
arXiv Detail & Related papers (2023-09-04T17:30:21Z) - IIVA: A Simulation Based Generalized Framework for Interdependent
Infrastructure Vulnerability Assessment [0.0]
This paper proposes a novel infrastructure vulnerability assessment framework that accounts for: various types of infrastructure interdependencies.
It is observed that higher the initial failure rate of the components, higher is the vulnerability of the infrastructure.
arXiv Detail & Related papers (2022-12-13T20:37:03Z) - ModularFed: Leveraging Modularity in Federated Learning Frameworks [8.139264167572213]
We propose a research-focused framework that addresses the complexity of Federated Learning (FL) implementations.
Within this architecture, protocols are blueprints that strictly define the framework's components' design.
Our protocols aim to enable modularity in FL, supporting third-party plug-and-play architecture and dynamic simulators.
arXiv Detail & Related papers (2022-10-31T10:21:19Z) - Inference and dynamic decision-making for deteriorating systems with
probabilistic dependencies through Bayesian networks and deep reinforcement
learning [0.0]
We propose an efficient algorithmic framework for inference and decision-making under uncertainty for engineering systems exposed to deteriorating environments.
In terms of policy optimization, we adopt a deep decentralized multi-agent actor-critic (DDMAC) reinforcement learning approach.
Results demonstrate that DDMAC policies offer substantial benefits when compared to state-of-the-art approaches.
arXiv Detail & Related papers (2022-09-02T14:45:40Z) - Exploiting Temporal Structures of Cyclostationary Signals for
Data-Driven Single-Channel Source Separation [98.95383921866096]
We study the problem of single-channel source separation (SCSS)
We focus on cyclostationary signals, which are particularly suitable in a variety of application domains.
We propose a deep learning approach using a U-Net architecture, which is competitive with the minimum MSE estimator.
arXiv Detail & Related papers (2022-08-22T14:04:56Z) - Causal Fairness Analysis [68.12191782657437]
We introduce a framework for understanding, modeling, and possibly solving issues of fairness in decision-making settings.
The main insight of our approach will be to link the quantification of the disparities present on the observed data with the underlying, and often unobserved, collection of causal mechanisms.
Our effort culminates in the Fairness Map, which is the first systematic attempt to organize and explain the relationship between different criteria found in the literature.
arXiv Detail & Related papers (2022-07-23T01:06:34Z) - On Telecommunication Service Imbalance and Infrastructure Resource
Deployment [95.80185574417428]
We propose a fine-grained and easy-to-compute imbalance index, aiming to quantitatively link the relation among telecommunication service imbalance, telecommunication infrastructure, and demographic distribution.
Based on this index, we also propose an infrastructure resource deployment strategy by minimizing the average imbalance index of any geographical segment.
arXiv Detail & Related papers (2021-04-08T17:45:32Z) - Edge-assisted Democratized Learning Towards Federated Analytics [67.44078999945722]
We show the hierarchical learning structure of the proposed edge-assisted democratized learning mechanism, namely Edge-DemLearn.
We also validate Edge-DemLearn as a flexible model training mechanism to build a distributed control and aggregation methodology in regions.
arXiv Detail & Related papers (2020-12-01T11:46:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.