Detecting Vulnerable Nodes in Urban Infrastructure Interdependent
Network
- URL: http://arxiv.org/abs/2307.09866v2
- Date: Tue, 1 Aug 2023 06:48:51 GMT
- Title: Detecting Vulnerable Nodes in Urban Infrastructure Interdependent
Network
- Authors: Jinzhu Mao, Liu Cao, Chen Gao, Huandong Wang, Hangyu Fan, Depeng Jin,
Yong Li
- Abstract summary: We model the interdependent network as a heterogeneous graph and propose a system based on graph neural network with reinforcement learning.
The presented system leverages deep learning techniques to understand and analyze the heterogeneous graph, which enables us to capture the risk of cascade failure and discover vulnerable infrastructures of cities.
- Score: 30.78792992230233
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Understanding and characterizing the vulnerability of urban infrastructures,
which refers to the engineering facilities essential for the regular running of
cities and that exist naturally in the form of networks, is of great value to
us. Potential applications include protecting fragile facilities and designing
robust topologies, etc. Due to the strong correlation between different
topological characteristics and infrastructure vulnerability and their
complicated evolution mechanisms, some heuristic and machine-assisted analysis
fall short in addressing such a scenario. In this paper, we model the
interdependent network as a heterogeneous graph and propose a system based on
graph neural network with reinforcement learning, which can be trained on
real-world data, to characterize the vulnerability of the city system
accurately. The presented system leverages deep learning techniques to
understand and analyze the heterogeneous graph, which enables us to capture the
risk of cascade failure and discover vulnerable infrastructures of cities.
Extensive experiments with various requests demonstrate not only the expressive
power of our system but also transferring ability and necessity of the specific
components.
Related papers
- TDNetGen: Empowering Complex Network Resilience Prediction with Generative Augmentation of Topology and Dynamics [14.25304439234864]
We introduce a novel resilience prediction framework for complex networks, designed to tackle this issue through generative data augmentation of network topology and dynamics.
Experiment results on three network datasets demonstrate that our proposed framework TDNetGen can achieve high prediction accuracy up to 85%-95%.
arXiv Detail & Related papers (2024-08-19T09:20:31Z) - Disentangling the Causes of Plasticity Loss in Neural Networks [55.23250269007988]
We show that loss of plasticity can be decomposed into multiple independent mechanisms.
We show that a combination of layer normalization and weight decay is highly effective at maintaining plasticity in a variety of synthetic nonstationary learning tasks.
arXiv Detail & Related papers (2024-02-29T00:02:33Z) - Persistence-based operators in machine learning [62.997667081978825]
We introduce a class of persistence-based neural network layers.
Persistence-based layers allow the users to easily inject knowledge about symmetries respected by the data, are equipped with learnable weights, and can be composed with state-of-the-art neural architectures.
arXiv Detail & Related papers (2022-12-28T18:03:41Z) - IIVA: A Simulation Based Generalized Framework for Interdependent
Infrastructure Vulnerability Assessment [0.0]
This paper proposes a novel infrastructure vulnerability assessment framework that accounts for: various types of infrastructure interdependencies.
It is observed that higher the initial failure rate of the components, higher is the vulnerability of the infrastructure.
arXiv Detail & Related papers (2022-12-13T20:37:03Z) - A Bayesian Approach to Reconstructing Interdependent Infrastructure
Networks from Cascading Failures [2.9364290037516496]
Understanding network interdependencies is crucial to anticipate cascading failures and plan for disruptions.
Data on the topology of individual networks are often publicly unavailable due to privacy and security concerns.
We propose a scalable nonparametric Bayesian approach to reconstruct the topology of interdependent infrastructure networks.
arXiv Detail & Related papers (2022-11-28T17:45:41Z) - A neural anisotropic view of underspecification in deep learning [60.119023683371736]
We show that the way neural networks handle the underspecification of problems is highly dependent on the data representation.
Our results highlight that understanding the architectural inductive bias in deep learning is fundamental to address the fairness, robustness, and generalization of these systems.
arXiv Detail & Related papers (2021-04-29T14:31:09Z) - Machine learning dismantling and early-warning signals of disintegration
in complex systems [0.0]
We show that a machine trained to dismantle relatively small systems is able to identify higher-order topological patterns.
Remarkably, the machine assesses the probability that next attacks will disintegrate the system.
arXiv Detail & Related papers (2021-01-07T09:39:13Z) - A game-theoretic analysis of networked system control for common-pool
resource management using multi-agent reinforcement learning [54.55119659523629]
Multi-agent reinforcement learning has recently shown great promise as an approach to networked system control.
Common-pool resources include arable land, fresh water, wetlands, wildlife, fish stock, forests and the atmosphere.
arXiv Detail & Related papers (2020-10-15T14:12:26Z) - Automated Search for Resource-Efficient Branched Multi-Task Networks [81.48051635183916]
We propose a principled approach, rooted in differentiable neural architecture search, to automatically define branching structures in a multi-task neural network.
We show that our approach consistently finds high-performing branching structures within limited resource budgets.
arXiv Detail & Related papers (2020-08-24T09:49:19Z) - Neural networks adapting to datasets: learning network size and topology [77.34726150561087]
We introduce a flexible setup allowing for a neural network to learn both its size and topology during the course of a gradient-based training.
The resulting network has the structure of a graph tailored to the particular learning task and dataset.
arXiv Detail & Related papers (2020-06-22T12:46:44Z) - Detecting structural perturbations from time series with deep learning [0.0]
We present a graph neural network approach to infer structural perturbations from functional time series.
We show our data-driven approach outperforms typical reconstruction methods.
This work uncovers a practical avenue to study the resilience of real-world complex systems.
arXiv Detail & Related papers (2020-06-09T13:08:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.