論文の概要: GraphInsight: Unlocking Insights in Large Language Models for Graph Structure Understanding
- arxiv url: http://arxiv.org/abs/2409.03258v2
- Date: Fri, 18 Oct 2024 03:11:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 23:23:02.507947
- Title: GraphInsight: Unlocking Insights in Large Language Models for Graph Structure Understanding
- Title(参考訳): GraphInsight: グラフ構造理解のための大規模言語モデルのロック解除
- Authors: Yukun Cao, Shuo Han, Zengyi Gao, Zezhong Ding, Xike Xie, S. Kevin Zhou,
- Abstract要約: 大規模言語モデル(LLM)は、グラフ記述シーケンスのプロンプトを通じてグラフィカルな構造情報を理解するのに苦労する。
マクロおよびマイクロレベルのグラフィカル情報に対するLLMの理解を改善するための新しいフレームワークであるGraphInsightを提案する。
- 参考スコア(独自算出の注目度): 17.724492441325165
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Although Large Language Models (LLMs) have demonstrated potential in processing graphs, they struggle with comprehending graphical structure information through prompts of graph description sequences, especially as the graph size increases. We attribute this challenge to the uneven memory performance of LLMs across different positions in graph description sequences, known as ''positional biases''. To address this, we propose GraphInsight, a novel framework aimed at improving LLMs' comprehension of both macro- and micro-level graphical information. GraphInsight is grounded in two key strategies: 1) placing critical graphical information in positions where LLMs exhibit stronger memory performance, and 2) investigating a lightweight external knowledge base for regions with weaker memory performance, inspired by retrieval-augmented generation (RAG). Moreover, GraphInsight explores integrating these two strategies into LLM agent processes for composite graph tasks that require multi-step reasoning. Extensive empirical studies on benchmarks with a wide range of evaluation tasks show that GraphInsight significantly outperforms all other graph description methods (e.g., prompting techniques and reordering strategies) in understanding graph structures of varying sizes.
- Abstract(参考訳): 大規模言語モデル(LLM)はグラフ処理の可能性を実証しているが、グラフサイズが大きくなるにつれてグラフ記述シーケンスのプロンプトを通じてグラフィカル構造情報の理解に苦慮している。
この課題は「位置バイアス」と呼ばれるグラフ記述配列の異なる位置におけるLLMの不均一メモリ性能に起因する。
そこで我々は,マクロおよびマイクロレベルのグラフィカル情報に対するLLMの理解を改善するための新しいフレームワークであるGraphInsightを提案する。
GraphInsightには2つの重要な戦略がある。
1)LCMがより強力なメモリ性能を示す位置に重要なグラフィカル情報を配置し、
2)検索強化世代(RAG)にインスパイアされた,メモリ性能の低い領域に対する軽量な外部知識ベースの検討。
さらに、GraphInsightは、これらの2つの戦略を多段階推論を必要とする複合グラフタスクのLLMエージェントプロセスに統合することを検討している。
幅広い評価タスクを持つベンチマークに関する広範な実証研究により、グラフインサイトは他のグラフ記述手法(例えば、様々な大きさのグラフ構造を理解する上でのテクニックや並べ替え戦略)を著しく上回っていることが示されている。
関連論文リスト
- A Hierarchical Language Model For Interpretable Graph Reasoning [47.460255447561906]
ノード中心の局所情報と相互作用中心のグローバル構造を捉えるために2ブロックアーキテクチャを用いる階層型グラフ言語モデル(HLM-G)を導入する。
提案手法は,大規模グラフ処理における計算コストを削減しつつ,高い効率性,効率性,ロバスト性で様々なグラフクエリに対処することを可能にする。
多様なグラフ推論およびノード,リンク,グラフレベルの実世界のタスクに対する総合的な評価は,本手法の優位性を強調している。
論文 参考訳(メタデータ) (2024-10-29T00:28:02Z) - How Do Large Language Models Understand Graph Patterns? A Benchmark for Graph Pattern Comprehension [53.6373473053431]
この研究は、グラフパターンタスクにおける大規模言語モデルの能力を評価するためのベンチマークを導入する。
我々は,LLMが用語的記述と位相的記述の両方に基づいて,グラフパターンを理解できるかどうかを評価するベンチマークを開発した。
私たちのベンチマークでは、合成データセットと実際のデータセットの両方と、11のタスクと7のモデルで構成されています。
論文 参考訳(メタデータ) (2024-10-04T04:48:33Z) - GraphInstruct: Empowering Large Language Models with Graph Understanding and Reasoning Capability [28.713449421717193]
大規模言語モデル(LLM)のグラフ理解能力の評価と向上を行う。
本稿では,21の古典的グラフ推論タスクを含むGraphInstructというベンチマークを提案する。
我々は,グラフ理解能力の顕著な向上を示す効率的な命令チューニングにより,GraphLMを構築する。
論文 参考訳(メタデータ) (2024-03-07T13:36:08Z) - G-Retriever: Retrieval-Augmented Generation for Textual Graph Understanding and Question Answering [61.93058781222079]
現実のテキストグラフを対象とするフレキシブルな問合せフレームワークを開発した。
一般のテキストグラフに対する最初の検索拡張生成(RAG)手法を提案する。
G-Retrieverは、このタスクをSteiner Tree最適化問題として定式化し、グラフ上でRAGを実行する。
論文 参考訳(メタデータ) (2024-02-12T13:13:04Z) - Can Graph Descriptive Order Affect Solving Graph Problems with LLMs? [38.1577036285387]
大規模言語モデル(LLM)は、数学的推論や論理的推論を含む推論タスクにおいて大きな成功を収めた。
従来の研究は様々な手法を用いてLSMのグラフ推論能力について研究してきた。
重要な要素は、主に見過ごされ、グラフ記述がモデルに提示される即時順序である。
論文 参考訳(メタデータ) (2024-02-11T09:46:24Z) - GraphGPT: Graph Instruction Tuning for Large Language Models [27.036935149004726]
グラフニューラルネットワーク(GNN)は、グラフ構造を理解するために進化してきた。
堅牢性を高めるために、自己教師付き学習(SSL)はデータ拡張の重要なツールとなっている。
本研究は,ゼロショット学習環境におけるグラフモデルの一般化を推し進めることによって,この問題に対処する。
論文 参考訳(メタデータ) (2023-10-19T06:17:46Z) - Integrating Graphs with Large Language Models: Methods and Prospects [68.37584693537555]
大規模言語モデル (LLMs) が最前線として登場し、様々なアプリケーションにおいて非並列の長所を示している。
LLMとグラフ構造化データを組み合わせることは、非常に興味深いトピックです。
本稿では、そのような統合を2つの主要なカテゴリに分岐する。
論文 参考訳(メタデータ) (2023-10-09T07:59:34Z) - Talk like a Graph: Encoding Graphs for Large Language Models [15.652881653332194]
大規模言語モデル(LLM)による消費用テキストとしてグラフ構造化データを符号化する最初の包括的研究について検討する。
グラフ解析におけるLCMの性能は,(1)グラフ符号化法,(2)グラフ処理自体の性質,(3)興味深いことに,考慮されたグラフの構造の3つの基本レベルによって異なることを示す。
論文 参考訳(メタデータ) (2023-10-06T19:55:21Z) - GraphCoCo: Graph Complementary Contrastive Learning [65.89743197355722]
グラフコントラスト学習(GCL)は、手作業によるアノテーションの監督なしに、グラフ表現学習(GRL)において有望な性能を示した。
本稿では,この課題に対処するため,グラフココというグラフ補完型コントラスト学習手法を提案する。
論文 参考訳(メタデータ) (2022-03-24T02:58:36Z) - Towards Graph Self-Supervised Learning with Contrastive Adjusted Zooming [48.99614465020678]
本稿では,グラフコントラスト適応ズームによる自己教師付きグラフ表現学習アルゴリズムを提案する。
このメカニズムにより、G-Zoomはグラフから複数のスケールから自己超越信号を探索して抽出することができる。
我々は,実世界のデータセットに関する広範な実験を行い,提案したモデルが常に最先端の手法より優れていることを示す。
論文 参考訳(メタデータ) (2021-11-20T22:45:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。