Quantum Algorithm For Testing Convexity of Function
- URL: http://arxiv.org/abs/2409.03312v1
- Date: Thu, 5 Sep 2024 07:38:38 GMT
- Title: Quantum Algorithm For Testing Convexity of Function
- Authors: Nhat A. Nghiem, Tzu-Chieh Wei,
- Abstract summary: An important property of a real-valued function is its convexity, which plays a very crucial role in many areas, such as thermodynamics and geometry.
Motivated by recent advances in quantum computation as well as the quest for quantum advantage, we give a quantum algorithm for testing convexity of functions.
We show that quantum computers can reveal the convexity property superpolynomially faster than classical computers with respect to number of variables.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Functions are a fundamental object in mathematics, with countless applications to different fields, and are usually classified based on certain properties, given their domains and images. An important property of a real-valued function is its convexity, which plays a very crucial role in many areas, such as thermodynamics and geometry. Motivated by recent advances in quantum computation as well as the quest for quantum advantage, we give a quantum algorithm for testing convexity of polynomial functions, which appears frequently in multiple contexts, such as optimization, machine learning, physics, etc. We show that quantum computers can reveal the convexity property superpolynomially faster than classical computers with respect to number of variables. As a corollary, we provide a significant improvement and extension on quantum Newton's method constructed in earlier work of Rebentrost et al [New J. Phys. \textbf{21} 073023 (2019)]. We further discuss our algorithm in a broader context, such as potential application in the study of geometric structure of manifold, testing training landscape of variational quantum algorithm and also gradient descent/Newton's method for optimization.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Towards Quantum Computational Mechanics [1.530480694206666]
We show how quantum computing can be used to solve representative element volume (RVE) problems in computational homogenisation.
Our quantum RVE solver attains exponential acceleration with respect to classical solvers.
arXiv Detail & Related papers (2023-12-06T12:53:02Z) - Quantum algorithms: A survey of applications and end-to-end complexities [90.05272647148196]
The anticipated applications of quantum computers span across science and industry.
We present a survey of several potential application areas of quantum algorithms.
We outline the challenges and opportunities in each area in an "end-to-end" fashion.
arXiv Detail & Related papers (2023-10-04T17:53:55Z) - Lie-algebraic classical simulations for variational quantum computing [0.755972004983746]
Methods relying on the Lie-algebraic structure of quantum dynamics have received relatively little attention.
We present a framework that we call "$mathfrakg$sim", and showcase their efficient implementation in several paradigmatic variational quantum computing tasks.
Specifically, we perform Lie-algebraic simulations to train and parametrized quantum circuits, design enhanced parameter strategies, solve tasks of quantum circuit synthesis, and train a quantum-phase synthesis.
arXiv Detail & Related papers (2023-08-02T21:08:18Z) - QNEAT: Natural Evolution of Variational Quantum Circuit Architecture [95.29334926638462]
We focus on variational quantum circuits (VQC), which emerged as the most promising candidates for the quantum counterpart of neural networks.
Although showing promising results, VQCs can be hard to train because of different issues, e.g., barren plateau, periodicity of the weights, or choice of architecture.
We propose a gradient-free algorithm inspired by natural evolution to optimize both the weights and the architecture of the VQC.
arXiv Detail & Related papers (2023-04-14T08:03:20Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - An in-principle super-polynomial quantum advantage for approximating
combinatorial optimization problems via computational learning theory [5.907281242647458]
We prove that quantum computers feature an in-principle super-polynomial advantage over classical computers in approximating solutions to optimization problems.
The core of the quantum advantage is ultimately borrowed from Shor's quantum algorithm for factoring.
arXiv Detail & Related papers (2022-12-16T19:01:04Z) - Variational Quantum Continuous Optimization: a Cornerstone of Quantum
Mathematical Analysis [0.0]
We show how universal quantum computers can handle mathematical analysis calculations for functions with continuous domains.
The basic building block of our approach is a variational quantum circuit where each qubit encodes up to three continuous variables.
By combining this encoding with quantum state tomography, a variational quantum circuit of $n$ qubits can optimize functions of up to $3n$ continuous variables.
arXiv Detail & Related papers (2022-10-06T18:00:04Z) - Near-term quantum algorithm for computing molecular and materials
properties based on recursive variational series methods [44.99833362998488]
We propose a quantum algorithm to estimate the properties of molecules using near-term quantum devices.
We test our method by computing the one-particle Green's function in the energy domain and the autocorrelation function in the time domain.
arXiv Detail & Related papers (2022-06-20T16:33:23Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
This work implements the general Quantum Annealer Eigensolver (QAE) algorithm to solve the molecular electronic Hamiltonian eigenvalue-eigenvector problem on a D-Wave 2000Q quantum annealer.
We demonstrate the use of D-Wave hardware for obtaining ground and electronically excited states across a variety of small molecular systems.
arXiv Detail & Related papers (2020-09-02T22:46:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.