Quantum computation of molecular response properties
- URL: http://arxiv.org/abs/2001.03406v4
- Date: Mon, 27 Jul 2020 13:59:00 GMT
- Title: Quantum computation of molecular response properties
- Authors: Xiaoxia Cai, Wei-Hai Fang, Heng Fan, Zhendong Li
- Abstract summary: We propose an algorithm for computing linear and nonlinear molecular response properties on quantum computers.
On the other hand, we introduce a variational hybrid quantum-classical variant of the proposed algorithm, which is more practical for near-term quantum devices.
- Score: 12.66895275733527
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurately predicting response properties of molecules such as the dynamic
polarizability and hyperpolarizability using quantum mechanics has been a
long-standing challenge with widespread applications in material and drug
design. Classical simulation techniques in quantum chemistry are hampered by
the exponential growth of the many-electron Hilbert space as the system size
increases. In this work, we propose an algorithm for computing linear and
nonlinear molecular response properties on quantum computers, by first
reformulating the target property into a symmetric expression more suitable for
quantum computation via introducing a set of auxiliary quantum states, and then
determining these auxiliary states via solving the corresponding linear systems
of equations on quantum computers. On one hand, we prove that using the quantum
linear system algorithm [Harrow et al., Phys. Rev. Lett. 103, 150502 (2009)] as
a subroutine the proposed algorithm scales only polynomially in the system size
instead of the dimension of the exponentially large Hilbert space, and hence
achieves an exponential speedup over existing classical algorithms. On the
other hand, we introduce a variational hybrid quantum-classical variant of the
proposed algorithm, which is more practical for near-term quantum devices.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - A hybrid quantum-classical algorithm for multichannel quantum scattering
of atoms and molecules [62.997667081978825]
We propose a hybrid quantum-classical algorithm for solving the Schr"odinger equation for atomic and molecular collisions.
The algorithm is based on the $S$-matrix version of the Kohn variational principle, which computes the fundamental scattering $S$-matrix.
We show how the algorithm could be scaled up to simulate collisions of large polyatomic molecules.
arXiv Detail & Related papers (2023-04-12T18:10:47Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Exhaustive search for optimal molecular geometries using imaginary-time
evolution on a quantum computer [0.0]
We propose a nonvariational scheme for geometry optimization of molecules for the first-quantized eigensolver.
We encode both electronic states and candidate molecular geometries as a superposition of many-qubit states.
We show that the circuit depth scales as O (n_e2 poly(log n_e)) for the electron number n_e, which can be reduced to O (n_e poly(log n_e)) if extra O (n_e log n_e) qubits are available.
arXiv Detail & Related papers (2022-10-18T14:18:20Z) - Variational Quantum Computation of Molecular Linear Response Properties
on a Superconducting Quantum Processor [20.69554086981598]
We introduce a pragmatic variational quantum response (VQR) algorithm for response properties, which circumvents the need for deep quantum circuits.
We report the first simulation of linear response properties of molecules including dynamic polarizabilities and absorption spectra on a superconducting quantum processor.
arXiv Detail & Related papers (2022-01-07T12:24:03Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Variational Quantum Linear Solver with Dynamic Ansatz [0.0]
Variational quantum algorithms have found success in the NISQ era owing to their hybrid quantum-classical approach.
We introduce the dynamic ansatz in the Variational Quantum Linear Solver for a system of linear algebraic equations.
We demonstrate the algorithm advantage in comparison to the standard, static ansatz by utilizing fewer quantum resources.
arXiv Detail & Related papers (2021-07-19T03:42:25Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
This work implements the general Quantum Annealer Eigensolver (QAE) algorithm to solve the molecular electronic Hamiltonian eigenvalue-eigenvector problem on a D-Wave 2000Q quantum annealer.
We demonstrate the use of D-Wave hardware for obtaining ground and electronically excited states across a variety of small molecular systems.
arXiv Detail & Related papers (2020-09-02T22:46:47Z) - Quantum Solver of Contracted Eigenvalue Equations for Scalable Molecular
Simulations on Quantum Computing Devices [0.0]
We introduce a quantum solver of contracted eigenvalue equations, the quantum analogue of classical methods for the energies.
We demonstrate the algorithm though computations on both a quantum simulator and two IBM quantum processing units.
arXiv Detail & Related papers (2020-04-23T18:35:26Z) - Simulating quantum chemistry in the seniority-zero space on qubit-based
quantum computers [0.0]
We combine the so-called seniority-zero, or paired-electron, approximation of computational quantum chemistry with techniques for simulating molecular chemistry on gate-based quantum computers.
We show that using the freed-up quantum resources for increasing the basis set can lead to more accurate results and reductions in the necessary number of quantum computing runs.
arXiv Detail & Related papers (2020-01-31T19:44:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.