論文の概要: Confidential Computing Transparency
- arxiv url: http://arxiv.org/abs/2409.03720v1
- Date: Thu, 5 Sep 2024 17:24:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 19:43:43.709904
- Title: Confidential Computing Transparency
- Title(参考訳): 信用計算の透明性
- Authors: Ceren Kocaoğullar, Tina Marjanov, Ivan Petrov, Ben Laurie, Al Cutter, Christoph Kern, Alice Hutchings, Alastair R. Beresford,
- Abstract要約: 本稿では,段階的な透明性を有する信頼性コンピューティング透明性フレームワークを提案する。
このフレームワークは、レビュアーに説明責任を組み込むことによって、オープンソースのコードや監査のような現在の手段を越えている。
私たちの結びついたアプローチは、複雑な現実世界のシステムにおいて透明性を実現するための実践的な経路を提供します。
- 参考スコア(独自算出の注目度): 7.9699781371465965
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Confidential Computing is a security paradigm designed to protect data in-use by leveraging hardware-based Trusted Execution Environments (TEEs). While TEEs offer significant security benefits, the need for user trust remains a challenge, as attestation alone cannot guarantee the absence of vulnerabilities or backdoors. To address this, we propose a Confidential Computing Transparency framework with progressive levels of transparency. This framework goes beyond current measures like open-source code and audits by incorporating accountability for reviewers and robust technical safeguards, creating a comprehensive trust chain. Our tiered approach provides a practical pathway to achieving transparency in complex, real-world systems. Through a user study with 400 participants, we demonstrate that higher levels of transparency are associated with increased user comfort, particularly for sensitive data types.
- Abstract(参考訳): Confidential Computingは、ハードウェアベースのTrusted Execution Environments(TEEs)を活用することで、データ使用を保護するために設計されたセキュリティパラダイムである。
TEEは重大なセキュリティ上のメリットを提供するが、認証だけで脆弱性やバックドアの欠如を保証できないため、ユーザ信頼の必要性は依然として課題である。
この問題に対処するため,我々は,段階的な透明性を有する信頼度コンピューティング透明性フレームワークを提案する。
このフレームワークは、レビュアーへの説明責任と堅牢な技術的保護を取り入れ、包括的な信頼連鎖を作ることによって、オープンソースのコードや監査のような現在の手段を越えています。
私たちの結びついたアプローチは、複雑な現実世界のシステムにおいて透明性を実現するための実践的な経路を提供します。
400人の参加者によるユーザスタディを通じて、高レベルの透明性がユーザの快適性、特に機密データタイプに結びついていることが実証された。
関連論文リスト
- Trustworthy AI: Securing Sensitive Data in Large Language Models [0.0]
大規模言語モデル(LLM)は、堅牢なテキスト生成と理解を可能にすることで自然言語処理(NLP)を変革した。
本稿では, 機密情報の開示を動的に制御するために, 信頼機構をLCMに組み込むための包括的枠組みを提案する。
論文 参考訳(メタデータ) (2024-09-26T19:02:33Z) - Physical Layer Deception with Non-Orthogonal Multiplexing [52.11755709248891]
本稿では,ワイヤタッピングの試みに積極的に対処する物理層騙し(PLD)の枠組みを提案する。
PLDはPLSと偽装技術を組み合わせることで、積極的に盗聴の試みに対処する。
本研究では,PLDフレームワークの有効性を詳細な分析で証明し,従来のPLS手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-06-30T16:17:39Z) - Privacy-Preserving Deep Learning Using Deformable Operators for Secure Task Learning [14.187385349716518]
既存のプライバシー保護方法は、画像暗号化や知覚変換アプローチに依存している。
安全なタスク学習に変形可能な演算子の集合を用いる新しいプライバシ保存フレームワークを提案する。
論文 参考訳(メタデータ) (2024-04-08T19:46:20Z) - Securing Federated Learning with Control-Flow Attestation: A Novel Framework for Enhanced Integrity and Resilience against Adversarial Attacks [2.28438857884398]
分散機械学習パラダイムとしてのフェデレートラーニング(FL)は、新たなサイバーセキュリティ課題を導入した。
本研究では,従来サイバーセキュリティに用いられてきた制御フロー(CFA)機構にインスパイアされた,革新的なセキュリティフレームワークを提案する。
我々は、ネットワーク全体にわたるモデル更新の完全性を認証し、検証し、モデル中毒や敵対的干渉に関連するリスクを効果的に軽減する。
論文 参考訳(メタデータ) (2024-03-15T04:03:34Z) - A Survey and Comparative Analysis of Security Properties of CAN Authentication Protocols [92.81385447582882]
コントロールエリアネットワーク(CAN)バスは車内通信を本質的に安全でないものにしている。
本稿では,CANバスにおける15の認証プロトコルをレビューし,比較する。
実装の容易性に寄与する本質的な運用基準に基づくプロトコルの評価を行う。
論文 参考訳(メタデータ) (2024-01-19T14:52:04Z) - HasTEE+ : Confidential Cloud Computing and Analytics with Haskell [50.994023665559496]
信頼性コンピューティングは、Trusted Execution Environments(TEEs)と呼ばれる特別なハードウェア隔離ユニットを使用して、コテナントクラウドデプロイメントにおける機密コードとデータの保護を可能にする。
低レベルのC/C++ベースのツールチェーンを提供するTEEは、固有のメモリ安全性の脆弱性の影響を受けやすく、明示的で暗黙的な情報フローのリークを監視するための言語構造が欠如している。
私たちは、Haskellに埋め込まれたドメイン固有言語(cla)であるHasTEE+を使って、上記の問題に対処します。
論文 参考訳(メタデータ) (2024-01-17T00:56:23Z) - Blockchain-based Zero Trust on the Edge [5.323279718522213]
本稿では,ブロックチェーンに拡張されたゼロトラストアーキテクチャ(ZTA)に基づく新たなアプローチを提案し,セキュリティをさらに強化する。
ブロックチェーンコンポーネントは、ユーザの要求を格納するための不変データベースとして機能し、潜在的に悪意のあるユーザアクティビティを分析して識別することで、信頼性を検証するために使用される。
スマートシティにおけるその実現可能性と適用性を検証するために,テストベッド上で実施したフレームワーク,アプローチのプロセス,実験について論じる。
論文 参考訳(メタデータ) (2023-11-28T12:43:21Z) - Auditing and Generating Synthetic Data with Controllable Trust Trade-offs [54.262044436203965]
合成データセットとAIモデルを包括的に評価する総合監査フレームワークを導入する。
バイアスや差別の防止、ソースデータへの忠実性の確保、実用性、堅牢性、プライバシ保護などに焦点を当てている。
多様なユースケースにまたがる様々な生成モデルを監査することにより,フレームワークの有効性を実証する。
論文 参考訳(メタデータ) (2023-04-21T09:03:18Z) - Trustworthy Transparency by Design [57.67333075002697]
本稿では,ユーザ信頼とエクスペリエンスに関する研究を取り入れた,ソフトウェア設計のための透明性フレームワークを提案する。
私たちのフレームワークは、その設計に透明性を取り入れたソフトウェアの開発を可能にします。
論文 参考訳(メタデータ) (2021-03-19T12:34:01Z) - Trustworthy AI [75.99046162669997]
入力データの小さな敵対的変化への脆さ、決定の説明能力、トレーニングデータのバイアスに対処する能力は、最も顕著な制限である。
我々は,AIシステムに対するユーザおよび公的な信頼を高める上での6つの重要な問題に対処するために,信頼に値するAIに関するチュートリアルを提案する。
論文 参考訳(メタデータ) (2020-11-02T20:04:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。