LLM-CI: Assessing Contextual Integrity Norms in Language Models
- URL: http://arxiv.org/abs/2409.03735v1
- Date: Thu, 5 Sep 2024 17:50:31 GMT
- Title: LLM-CI: Assessing Contextual Integrity Norms in Language Models
- Authors: Yan Shvartzshnaider, Vasisht Duddu, John Lacalamita,
- Abstract summary: Large language models (LLMs) may inadvertently encode societal preferences and norms.
This is especially challenging due to prompt sensitivity$-$small variations in prompts yield different responses.
We present LLM-CI, the first open-sourced framework to assess encoded norms.
- Score: 1.1715858161748576
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs), while memorizing parts of their training data scraped from the Internet, may also inadvertently encode societal preferences and norms. As these models are integrated into sociotechnical systems, it is crucial that the norms they encode align with societal expectations. These norms could vary across models, hyperparameters, optimization techniques, and datasets. This is especially challenging due to prompt sensitivity$-$small variations in prompts yield different responses, rendering existing assessment methodologies unreliable. There is a need for a comprehensive framework covering various models, optimization, and datasets, along with a reliable methodology to assess encoded norms. We present LLM-CI, the first open-sourced framework to assess privacy norms encoded in LLMs. LLM-CI uses a Contextual Integrity-based factorial vignette methodology to assess the encoded norms across different contexts and LLMs. We propose the multi-prompt assessment methodology to address prompt sensitivity by assessing the norms from only the prompts that yield consistent responses across multiple variants. Using LLM-CI and our proposed methodology, we comprehensively evaluate LLMs using IoT and COPPA vignettes datasets from prior work, examining the impact of model properties (e.g., hyperparameters, capacity) and optimization strategies (e.g., alignment, quantization).
Related papers
- OpenCoder: The Open Cookbook for Top-Tier Code Large Language Models [70.72097493954067]
Large language models (LLMs) for code have become indispensable in various domains, including code generation, reasoning tasks and agent systems.
While open-access code LLMs are increasingly approaching the performance levels of proprietary models, high-quality code LLMs remain limited.
We introduce OpenCoder, a top-tier code LLM that not only achieves performance comparable to leading models but also serves as an "open cookbook" for the research community.
arXiv Detail & Related papers (2024-11-07T17:47:25Z) - Context is Key: A Benchmark for Forecasting with Essential Textual Information [87.3175915185287]
"Context is Key" (CiK) is a time series forecasting benchmark that pairs numerical data with diverse types of carefully crafted textual context.
We evaluate a range of approaches, including statistical models, time series foundation models, and LLM-based forecasters.
Our experiments highlight the importance of incorporating contextual information, demonstrate surprising performance when using LLM-based forecasting models, and also reveal some of their critical shortcomings.
arXiv Detail & Related papers (2024-10-24T17:56:08Z) - Optimizing Large Language Models for Dynamic Constraints through Human-in-the-Loop Discriminators [0.0]
Large Language Models (LLMs) have recently demonstrated impressive capabilities across various real-world applications.
We propose a flexible framework that enables LLMs to interact with system interfaces, summarize constraint concepts, and continually optimize performance metrics.
Our framework achieved a $7.78%$ pass rate with the human discriminator and a $6.11%$ pass rate with the LLM-based discriminator.
arXiv Detail & Related papers (2024-10-19T17:27:38Z) - Reference Trustable Decoding: A Training-Free Augmentation Paradigm for Large Language Models [79.41139393080736]
Large language models (LLMs) have rapidly advanced and demonstrated impressive capabilities.
In-Context Learning (ICL) and.
Efficient Fine-Tuning (PEFT) are currently two mainstream methods for augmenting.
LLMs to downstream tasks.
We propose Reference Trustable Decoding (RTD), a paradigm that allows models to quickly adapt to new tasks without fine-tuning.
arXiv Detail & Related papers (2024-09-30T10:48:20Z) - The Ultimate Guide to Fine-Tuning LLMs from Basics to Breakthroughs: An Exhaustive Review of Technologies, Research, Best Practices, Applied Research Challenges and Opportunities [0.35998666903987897]
This report examines the fine-tuning of Large Language Models (LLMs)
It outlines the historical evolution of LLMs from traditional Natural Language Processing (NLP) models to their pivotal role in AI.
The report introduces a structured seven-stage pipeline for fine-tuning LLMs.
arXiv Detail & Related papers (2024-08-23T14:48:02Z) - Beyond Correctness: Benchmarking Multi-dimensional Code Generation for Large Language Models [43.56644186785491]
This paper proposes the RACE benchmark, which comprehensively evaluates the quality of code generated by large language models.
We analyze 28 representative LLMs based on RACE and find that current correctness-centric benchmarks fail to capture the multifaceted requirements of code in real-world scenarios.
arXiv Detail & Related papers (2024-07-16T08:08:48Z) - One Token Can Help! Learning Scalable and Pluggable Virtual Tokens for Retrieval-Augmented Large Language Models [67.49462724595445]
Retrieval-augmented generation (RAG) is a promising way to improve large language models (LLMs)
We propose a novel method that involves learning scalable and pluggable virtual tokens for RAG.
arXiv Detail & Related papers (2024-05-30T03:44:54Z) - RepEval: Effective Text Evaluation with LLM Representation [55.26340302485898]
RepEval is a metric that leverages the projection of Large Language Models (LLMs) representations for evaluation.
Our work underscores the richness of information regarding text quality embedded within LLM representations, offering insights for the development of new metrics.
arXiv Detail & Related papers (2024-04-30T13:50:55Z) - A Thorough Examination of Decoding Methods in the Era of LLMs [72.65956436513241]
Decoding methods play an indispensable role in converting language models from next-token predictors into practical task solvers.
This paper provides a comprehensive and multifaceted analysis of various decoding methods within the context of large language models.
Our findings reveal that decoding method performance is notably task-dependent and influenced by factors such as alignment, model size, and quantization.
arXiv Detail & Related papers (2024-02-10T11:14:53Z) - Large Language Model (LLM) Bias Index -- LLMBI [0.0]
The Large Language Model Bias Index (LLMBI) is a pioneering approach designed to quantify and address biases inherent in large language models (LLMs)
We formulated LLMBI using a composite scoring system incorporating multiple dimensions of bias, including but not limited to age, gender, and racial biases.
Our empirical analysis, conducted using responses from OpenAI's API, employs advanced sentiment analysis as a representative method for bias detection.
arXiv Detail & Related papers (2023-12-22T15:38:13Z) - Adapting LLMs for Efficient, Personalized Information Retrieval: Methods
and Implications [0.7832189413179361]
Large Language Models (LLMs) excel in comprehending and generating human-like text.
This paper explores strategies for integrating Language Models (LLMs) with Information Retrieval (IR) systems.
arXiv Detail & Related papers (2023-11-21T02:01:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.