Optimizing Large Language Models for Dynamic Constraints through Human-in-the-Loop Discriminators
- URL: http://arxiv.org/abs/2410.15163v2
- Date: Thu, 24 Oct 2024 04:46:32 GMT
- Title: Optimizing Large Language Models for Dynamic Constraints through Human-in-the-Loop Discriminators
- Authors: Timothy Wei, Annabelle Miin, Anastasia Miin,
- Abstract summary: Large Language Models (LLMs) have recently demonstrated impressive capabilities across various real-world applications.
We propose a flexible framework that enables LLMs to interact with system interfaces, summarize constraint concepts, and continually optimize performance metrics.
Our framework achieved a $7.78%$ pass rate with the human discriminator and a $6.11%$ pass rate with the LLM-based discriminator.
- Score: 0.0
- License:
- Abstract: Large Language Models (LLMs) have recently demonstrated impressive capabilities across various real-world applications. However, due to the current text-in-text-out paradigm, it remains challenging for LLMs to handle dynamic and complex application constraints, let alone devise general solutions that meet predefined system goals. Current common practices like model finetuning and reflection-based reasoning often address these issues case-by-case, limiting their generalizability. To address this issue, we propose a flexible framework that enables LLMs to interact with system interfaces, summarize constraint concepts, and continually optimize performance metrics by collaborating with human experts. As a case in point, we initialized a travel planner agent by establishing constraints from evaluation interfaces. Then, we employed both LLM-based and human discriminators to identify critical cases and continuously improve agent performance until the desired outcomes were achieved. After just one iteration, our framework achieved a $7.78\%$ pass rate with the human discriminator (a $40.2\%$ improvement over baseline) and a $6.11\%$ pass rate with the LLM-based discriminator. Given the adaptability of our proposal, we believe this framework can be applied to a wide range of constraint-based applications and lay a solid foundation for model finetuning with performance-sensitive data samples.
Related papers
- Embodied Agent Interface: Benchmarking LLMs for Embodied Decision Making [85.24399869971236]
We aim to evaluate Large Language Models (LLMs) for embodied decision making.
Existing evaluations tend to rely solely on a final success rate.
We propose a generalized interface (Embodied Agent Interface) that supports the formalization of various types of tasks.
arXiv Detail & Related papers (2024-10-09T17:59:00Z) - LLM-CI: Assessing Contextual Integrity Norms in Language Models [1.1715858161748576]
Large language models (LLMs) may inadvertently encode societal preferences and norms.
This is especially challenging due to prompt sensitivity$-$small variations in prompts yield different responses.
We present LLM-CI, the first open-sourced framework to assess encoded norms.
arXiv Detail & Related papers (2024-09-05T17:50:31Z) - Self-Exploring Language Models: Active Preference Elicitation for Online Alignment [88.56809269990625]
We propose a bilevel objective optimistically biased towards potentially high-reward responses to actively explore out-of-distribution regions.
Our experimental results demonstrate that when fine-tuned on Zephyr-7B-SFT and Llama-3-8B-Instruct models, Self-Exploring Language Models (SELM) significantly boosts the performance on instruction-following benchmarks.
arXiv Detail & Related papers (2024-05-29T17:59:07Z) - Multi-Reference Preference Optimization for Large Language Models [56.84730239046117]
We introduce a novel closed-form formulation for direct preference optimization using multiple reference models.
The resulting algorithm, Multi-Reference Preference Optimization (MRPO), leverages broader prior knowledge from diverse reference models.
Our experiments demonstrate that LLMs finetuned with MRPO generalize better in various preference data, regardless of data scarcity or abundance.
arXiv Detail & Related papers (2024-05-26T00:29:04Z) - Value Augmented Sampling for Language Model Alignment and Personalization [39.070662999014836]
We present a new framework for reward optimization, Value Augmented Sampling (VAS)
VAS solves for the optimal reward-maximizing policy without co-training the policy and the value function.
Our algorithm unlocks the new capability of composing several rewards and controlling the extent of each one during deployment time.
arXiv Detail & Related papers (2024-05-10T17:59:04Z) - Efficient and Responsible Adaptation of Large Language Models for Robust Top-k Recommendations [11.004673022505566]
Long user queries from millions of users can degrade the performance of large language models for recommendation.
We propose a hybrid task allocation framework that utilizes the capabilities of both large language models and traditional recommendation systems.
Our results on three real-world datasets show a significant reduction in weak users and improved robustness of RSs to sub-populations.
arXiv Detail & Related papers (2024-05-01T19:11:47Z) - Benchmark Self-Evolving: A Multi-Agent Framework for Dynamic LLM
Evaluation [51.99752147380505]
This paper presents a benchmark self-evolving framework to dynamically evaluate Large Language Models (LLMs)
We utilize a multi-agent system to manipulate the context or question of original instances, reframing new evolving instances with high confidence.
Our framework widens performance discrepancies both between different models and within the same model across various tasks.
arXiv Detail & Related papers (2024-02-18T03:40:06Z) - Entropy-Regularized Token-Level Policy Optimization for Language Agent Reinforcement [67.1393112206885]
Large Language Models (LLMs) have shown promise as intelligent agents in interactive decision-making tasks.
We introduce Entropy-Regularized Token-level Policy Optimization (ETPO), an entropy-augmented RL method tailored for optimizing LLMs at the token level.
We assess the effectiveness of ETPO within a simulated environment that models data science code generation as a series of multi-step interactive tasks.
arXiv Detail & Related papers (2024-02-09T07:45:26Z) - FollowBench: A Multi-level Fine-grained Constraints Following Benchmark for Large Language Models [79.62191017182518]
FollowBench is a benchmark for Fine-grained Constraints Following Benchmark for Large Language Models.
We introduce a Multi-level mechanism that incrementally adds a single constraint to the initial instruction at each increased level.
By evaluating 13 popular LLMs on FollowBench, we highlight the weaknesses of LLMs in instruction following and point towards potential avenues for future work.
arXiv Detail & Related papers (2023-10-31T12:32:38Z) - Revisit Input Perturbation Problems for LLMs: A Unified Robustness
Evaluation Framework for Noisy Slot Filling Task [18.623619585980688]
We propose a unified robustness evaluation framework based on the slot-filling task to evaluate the dialogue understanding capability of large language models.
Specifically, we construct a input perturbation evaluation dataset, Noise-LLM, which contains five types of single perturbation and four types of mixed perturbation data.
Our aim is to assess how well various robustness methods of LLMs perform in real-world noisy scenarios.
arXiv Detail & Related papers (2023-10-10T10:22:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.