Deep learning-based segmentation of T1 and T2 cardiac MRI maps for automated disease detection
- URL: http://arxiv.org/abs/2507.00903v1
- Date: Tue, 01 Jul 2025 16:08:54 GMT
- Title: Deep learning-based segmentation of T1 and T2 cardiac MRI maps for automated disease detection
- Authors: Andreea Bianca Popescu, Andreas Seitz, Heiko Mahrholdt, Jens Wetzl, Athira Jacob, Lucian Mihai Itu, Constantin Suciu, Teodora Chitiboi,
- Abstract summary: Tissue mapping enables quantitative cardiac tissue characterization but is limited by interobserver variability during manual delineation.<n>Traditional approaches relying on average relaxation values and single cutoffs may oversimplify complexity.<n>This study evaluates whether machine learning can achieve segmentation accuracy comparable to inter-observer variability.
- Score: 0.2593137041747032
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Objectives Parametric tissue mapping enables quantitative cardiac tissue characterization but is limited by inter-observer variability during manual delineation. Traditional approaches relying on average relaxation values and single cutoffs may oversimplify myocardial complexity. This study evaluates whether deep learning (DL) can achieve segmentation accuracy comparable to inter-observer variability, explores the utility of statistical features beyond mean T1/T2 values, and assesses whether machine learning (ML) combining multiple features enhances disease detection. Materials & Methods T1 and T2 maps were manually segmented. The test subset was independently annotated by two observers, and inter-observer variability was assessed. A DL model was trained to segment left ventricle blood pool and myocardium. Average (A), lower quartile (LQ), median (M), and upper quartile (UQ) were computed for the myocardial pixels and employed in classification by applying cutoffs or in ML. Dice similarity coefficient (DICE) and mean absolute percentage error evaluated segmentation performance. Bland-Altman plots assessed inter-user and model-observer agreement. Receiver operating characteristic analysis determined optimal cutoffs. Pearson correlation compared features from model and manual segmentations. F1-score, precision, and recall evaluated classification performance. Wilcoxon test assessed differences between classification methods, with p < 0.05 considered statistically significant. Results 144 subjects were split into training (100), validation (15) and evaluation (29) subsets. Segmentation model achieved a DICE of 85.4%, surpassing inter-observer agreement. Random forest applied to all features increased F1-score (92.7%, p < 0.001). Conclusion DL facilitates segmentation of T1/ T2 maps. Combining multiple features with ML improves disease detection.
Related papers
- AHDMIL: Asymmetric Hierarchical Distillation Multi-Instance Learning for Fast and Accurate Whole-Slide Image Classification [51.525891360380285]
AHDMIL is an Asymmetric Hierarchical Distillation Multi-Instance Learning framework.<n>It eliminates irrelevant patches through a two-step training process.<n>It consistently outperforms previous state-of-the-art methods in both classification performance and inference speed.
arXiv Detail & Related papers (2025-08-07T07:47:16Z) - Exploiting XAI maps to improve MS lesion segmentation and detection in MRI [1.024819169163989]
We explore the use of characteristics of lesion-specific saliency maps to refine segmentation and detection scores.
93 radiomic features extracted from the first set of maps were used to train a logistic regression model.
On the test set, F1 score and PPV were improved by a large margin when compared to the initial model.
arXiv Detail & Related papers (2024-08-21T07:49:01Z) - Thyroidiomics: An Automated Pipeline for Segmentation and Classification of Thyroid Pathologies from Scintigraphy Images [0.23960026858846614]
The objective of this study was to develop an automated pipeline that enhances thyroid disease classification using thyroid scintigraphy images.
Anterior thyroid scintigraphy images from 2,643 patients were collected and categorized into diffuse goiter (DG), multinodal goiter (MNG), and thyroiditis (TH)
The pipeline demonstrated comparable performance to physician segmentations on several classification metrics across different classes.
arXiv Detail & Related papers (2024-07-14T21:29:28Z) - PULASki: Learning inter-rater variability using statistical distances to improve probabilistic segmentation [35.34932609930401]
This work proposes the PULASki method as a computationally efficient generative tool for biomedical image segmentation.<n>It captures variability in expert annotations, even in small datasets.<n>Our experiments are also the first to present a comparative study of the computationally feasible segmentation of complex geometries using 3D patches and the traditional use of 2D slices.
arXiv Detail & Related papers (2023-12-25T10:31:22Z) - Learning to diagnose cirrhosis from radiological and histological labels
with joint self and weakly-supervised pretraining strategies [62.840338941861134]
We propose to leverage transfer learning from large datasets annotated by radiologists, to predict the histological score available on a small annex dataset.
We compare different pretraining methods, namely weakly-supervised and self-supervised ones, to improve the prediction of the cirrhosis.
This method outperforms the baseline classification of the METAVIR score, reaching an AUC of 0.84 and a balanced accuracy of 0.75.
arXiv Detail & Related papers (2023-02-16T17:06:23Z) - Adaptive Contrastive Learning with Dynamic Correlation for Multi-Phase
Organ Segmentation [25.171694372205774]
We propose a novel data-driven contrastive loss function that adapts the similar/dissimilar contrast relationship between samples in each minibatch at organ-level.
We evaluate our proposed approach on multi-organ segmentation with both non-contrast CT datasets and the MICCAI 2015 BTCV Challenge contrast-enhance CT datasets.
arXiv Detail & Related papers (2022-10-16T22:38:30Z) - Corneal endothelium assessment in specular microscopy images with Fuchs'
dystrophy via deep regression of signed distance maps [48.498376125522114]
This paper proposes a UNet-based segmentation approach that requires minimal post-processing.
It achieves reliable CE morphometric assessment and guttae identification across all degrees of Fuchs' dystrophy.
arXiv Detail & Related papers (2022-10-13T15:34:20Z) - Systematic Clinical Evaluation of A Deep Learning Method for Medical
Image Segmentation: Radiosurgery Application [48.89674088331313]
We systematically evaluate a Deep Learning (DL) method in a 3D medical image segmentation task.
Our method is integrated into the radiosurgery treatment process and directly impacts the clinical workflow.
arXiv Detail & Related papers (2021-08-21T16:15:40Z) - MSED: a multi-modal sleep event detection model for clinical sleep
analysis [62.997667081978825]
We designed a single deep neural network architecture to jointly detect sleep events in a polysomnogram.
The performance of the model was quantified by F1, precision, and recall scores, and by correlating index values to clinical values.
arXiv Detail & Related papers (2021-01-07T13:08:44Z) - autoTICI: Automatic Brain Tissue Reperfusion Scoring on 2D DSA Images of
Acute Ischemic Stroke Patients [7.239126951855493]
The Thrombolysis in Cerebral Infarction (TICI) score is an important metric for reperfusion therapy assessment in acute ischemic stroke.
Existing TICI scores are defined in coarse ordinal grades based on visual inspection, leading to inter- and intra-observer variation.
In this work, we present autoTICI, an automatic and quantitative TICI scoring method.
arXiv Detail & Related papers (2020-10-03T22:06:55Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
The aim of this work is to develop an accurate automatic segmentation method based on deep learning models for the myocardial borders on LGE-MRI.
A total number of 320 exams (with a mean number of 6 slices per exam) were used for training and 28 exams used for testing.
The performance analysis of the proposed ensemble model in the basal and middle slices was similar as compared to intra-observer study and slightly lower at apical slices.
arXiv Detail & Related papers (2020-05-27T20:44:38Z) - Deep Learning Based Detection and Localization of Intracranial Aneurysms
in Computed Tomography Angiography [5.973882600944421]
A two-step model was implemented: a 3D region proposal network for initial aneurysm detection and 3D DenseNetsfor false-positive reduction.
Our model showed statistically higher accuracy, sensitivity, and specificity when compared to the available model at 0.25 FPPV and the best F-1 score.
arXiv Detail & Related papers (2020-05-22T10:49:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.