論文の概要: Evaluating Machine Learning-based Skin Cancer Diagnosis
- arxiv url: http://arxiv.org/abs/2409.03794v1
- Date: Wed, 4 Sep 2024 02:44:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-09 17:50:10.797058
- Title: Evaluating Machine Learning-based Skin Cancer Diagnosis
- Title(参考訳): 機械学習による皮膚癌診断の評価
- Authors: Tanish Jain,
- Abstract要約: この研究は、MobileNetベースのモデルとカスタムCNNモデルの2つの畳み込みニューラルネットワークアーキテクチャを評価する。
どちらのモデルも、皮膚病変を7つのカテゴリに分類し、危険病変と良性病変を区別する能力について評価されている。
この研究は、モデルが説明可能性を示す一方で、異なる肌のトーンの公平性を確保するためにさらなる開発が必要であると結論付けている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study evaluates the reliability of two deep learning models for skin cancer detection, focusing on their explainability and fairness. Using the HAM10000 dataset of dermatoscopic images, the research assesses two convolutional neural network architectures: a MobileNet-based model and a custom CNN model. Both models are evaluated for their ability to classify skin lesions into seven categories and to distinguish between dangerous and benign lesions. Explainability is assessed using Saliency Maps and Integrated Gradients, with results interpreted by a dermatologist. The study finds that both models generally highlight relevant features for most lesion types, although they struggle with certain classes like seborrheic keratoses and vascular lesions. Fairness is evaluated using the Equalized Odds metric across sex and skin tone groups. While both models demonstrate fairness across sex groups, they show significant disparities in false positive and false negative rates between light and dark skin tones. A Calibrated Equalized Odds postprocessing strategy is applied to mitigate these disparities, resulting in improved fairness, particularly in reducing false negative rate differences. The study concludes that while the models show promise in explainability, further development is needed to ensure fairness across different skin tones. These findings underscore the importance of rigorous evaluation of AI models in medical applications, particularly in diverse population groups.
- Abstract(参考訳): 本研究では,皮膚がん検出のための2つの深層学習モデルの信頼性を評価し,その説明可能性と公平性に着目した。
皮膚内視鏡画像のHAM10000データセットを使用して、MobileNetベースのモデルとカスタムCNNモデルという、2つの畳み込みニューラルネットワークアーキテクチャを評価する。
どちらのモデルも、皮膚病変を7つのカテゴリに分類し、危険病変と良性病変を区別する能力について評価されている。
感性マップと統合勾配を用いて説明可能性を評価し, 皮膚科医が解釈した。
この研究は、両モデルが一般的にほとんどの病変の関連性を強調しているが、セボリック角化症や血管病変のような特定のクラスに苦慮していることを示している。
フェアネスは、性別と肌のトーングループ間での等化オッズ測定を用いて評価される。
両モデルとも性グループ間で公平性を示すが、明るい肌の色調と暗い肌の色調の間には偽陽性と偽陰性率に有意な相違が見られる。
Calibrated Equalized Odds postprocessing strategy を用いてこれらの格差を緩和し、特に偽陰性率の差を減少させる。
この研究は、モデルが説明可能性を示す一方で、異なる肌のトーンの公平性を確保するためにさらなる開発が必要であると結論付けている。
これらの知見は、医療応用、特に多様な集団におけるAIモデルの厳格な評価の重要性を浮き彫りにした。
関連論文リスト
- FairSkin: Fair Diffusion for Skin Disease Image Generation [54.29840149709033]
拡散モデル (DM) は, 合成医用画像の生成において主要な手法となっているが, 臨界二倍偏差に悩まされている。
このようなバイアスを3段階のリサンプリング機構によって緩和する新しいDMフレームワークであるFairSkinを提案する。
本手法は, 画像の多様性と品質を著しく向上させ, 臨床環境における皮膚疾患の検出精度の向上に寄与する。
論文 参考訳(メタデータ) (2024-10-29T21:37:03Z) - DDI-CoCo: A Dataset For Understanding The Effect Of Color Contrast In
Machine-Assisted Skin Disease Detection [51.92255321684027]
皮膚のトーンと色差効果の相互作用について検討し,色差が皮膚のトーン間のモデル性能バイアスの新たな原因となる可能性が示唆された。
我々の研究は皮膚疾患の検出を改善するために皮膚科のAIに補完的な角度を提供する。
論文 参考訳(メタデータ) (2024-01-24T07:45:24Z) - Robust and Interpretable Medical Image Classifiers via Concept
Bottleneck Models [49.95603725998561]
本稿では,自然言語の概念を用いた堅牢で解釈可能な医用画像分類器を構築するための新しいパラダイムを提案する。
具体的には、まず臨床概念をGPT-4から検索し、次に視覚言語モデルを用いて潜在画像の特徴を明示的な概念に変換する。
論文 参考訳(メタデータ) (2023-10-04T21:57:09Z) - CIRCLe: Color Invariant Representation Learning for Unbiased
Classification of Skin Lesions [16.65329510916639]
皮膚病変分類における公平性を改善するための深層表現学習法であるCIRCLeを提案する。
6種類のフィッツパトリック皮膚型と114の疾患にまたがる16k以上の画像において,CIRCLeの最先端性よりも優れた性能を示す。
論文 参考訳(メタデータ) (2022-08-29T12:06:10Z) - FairDisCo: Fairer AI in Dermatology via Disentanglement Contrastive
Learning [11.883809920936619]
本研究では,FairDisCoを提案する。
FairDisCoを3つのフェアネス手法、すなわち、再サンプリング、再重み付け、属性認識と比較する。
DPMとEOMの2つのフェアネス指標を多クラスに適用し,皮膚病変分類における皮膚型バイアスを強調した。
論文 参考訳(メタデータ) (2022-08-22T01:54:23Z) - Analyzing the Effects of Handling Data Imbalance on Learned Features
from Medical Images by Looking Into the Models [50.537859423741644]
不均衡なデータセットでモデルをトレーニングすることは、学習問題にユニークな課題をもたらす可能性がある。
ニューラルネットワークの内部ユニットを深く調べて、データの不均衡処理が学習した機能にどのように影響するかを観察します。
論文 参考訳(メタデータ) (2022-04-04T09:38:38Z) - EdgeMixup: Improving Fairness for Skin Disease Classification and
Segmentation [9.750368551427494]
皮膚病変は、広範囲の感染症やその他の病気の早期の指標である可能性がある。
深層学習(DL)モデルを用いた皮膚病変の診断は,プレスクリーニング患者を支援できる可能性が高い。
これらのモデルは、トレーニングデータに固有のバイアスを学習することが多く、ライトやダークスキンのトーンを持つ人の診断において、パフォーマンスのギャップを生じさせる可能性がある。
論文 参考訳(メタデータ) (2022-02-28T15:33:31Z) - SuperCon: Supervised Contrastive Learning for Imbalanced Skin Lesion
Classification [9.265557367859637]
SuperConは、皮膚病変分類におけるクラス不均衡問題を克服するための2段階のトレーニング戦略である。
2段階のトレーニング戦略は,クラス不均衡の分類問題に効果的に対処し,F1スコアとAUCスコアの点で既存の作業を大幅に改善する。
論文 参考訳(メタデータ) (2022-02-11T15:19:36Z) - What Do You See in this Patient? Behavioral Testing of Clinical NLP
Models [69.09570726777817]
本稿では,入力の変化に関する臨床結果モデルの振る舞いを評価する拡張可能なテストフレームワークを提案する。
私たちは、同じデータを微調整しても、モデル行動は劇的に変化し、最高のパフォーマンスのモデルが常に最も医学的に可能なパターンを学習していないことを示しています。
論文 参考訳(メタデータ) (2021-11-30T15:52:04Z) - Relational Subsets Knowledge Distillation for Long-tailed Retinal
Diseases Recognition [65.77962788209103]
本研究では,長尾データを知識に基づいて複数のクラスサブセットに分割し,クラスサブセット学習を提案する。
モデルがサブセット固有の知識の学習に集中するように強制する。
提案手法は長期網膜疾患認識タスクに有効であることが判明した。
論文 参考訳(メタデータ) (2021-04-22T13:39:33Z) - Analysis of skin lesion images with deep learning [0.0]
内視鏡画像の分類における美術の現状を評価します。
ImageNetデータセットに事前トレーニングされた様々なディープニューラルネットワークアーキテクチャは、組み合わせたトレーニングデータセットに適合する。
皮膚病変の8クラスの検出のためのこれらのモデルの性能と適用性を検討する。
論文 参考訳(メタデータ) (2021-01-11T10:58:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。