A Survey on Signed Graph Embedding: Methods and Applications
- URL: http://arxiv.org/abs/2409.03916v1
- Date: Thu, 5 Sep 2024 21:24:03 GMT
- Title: A Survey on Signed Graph Embedding: Methods and Applications
- Authors: Shrabani Ghosh,
- Abstract summary: A signed graph (SG) is a graph where edges carry sign information attached to it.
In this survey, we perform a comprehensive study of SG embedding methods and applications.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: A signed graph (SG) is a graph where edges carry sign information attached to it. The sign of a network can be positive, negative, or neutral. A signed network is ubiquitous in a real-world network like social networks, citation networks, and various technical networks. There are many network embedding models have been proposed and developed for signed networks for both homogeneous and heterogeneous types. SG embedding learns low-dimensional vector representations for nodes of a network, which helps to do many network analysis tasks such as link prediction, node classification, and community detection. In this survey, we perform a comprehensive study of SG embedding methods and applications. We introduce here the basic theories and methods of SGs and survey the current state of the art of signed graph embedding methods. In addition, we explore the applications of different types of SG embedding methods in real-world scenarios. As an application, we have explored the citation network to analyze authorship networks. We also provide source code and datasets to give future direction. Lastly, we explore the challenges of SG embedding and forecast various future research directions in this field.
Related papers
- Counterfactual Learning on Graphs: A Survey [34.47646823407408]
Graph neural networks (GNNs) have achieved great success in representation learning on graphs.
Counterfactual learning on graphs has shown promising results in alleviating these drawbacks.
Various approaches have been proposed for counterfactual fairness, explainability, link prediction and other applications on graphs.
arXiv Detail & Related papers (2023-04-03T21:42:42Z) - Network Representation Learning: From Preprocessing, Feature Extraction
to Node Embedding [9.844802841686105]
Network representation learning (NRL) advances the conventional graph mining of social networks, knowledge graphs, and complex biomedical and physics information networks.
This survey paper reviews the design principles and the different node embedding techniques for network representation learning over homogeneous networks.
arXiv Detail & Related papers (2021-10-14T17:46:37Z) - Temporal Graph Network Embedding with Causal Anonymous Walks
Representations [54.05212871508062]
We propose a novel approach for dynamic network representation learning based on Temporal Graph Network.
For evaluation, we provide a benchmark pipeline for the evaluation of temporal network embeddings.
We show the applicability and superior performance of our model in the real-world downstream graph machine learning task provided by one of the top European banks.
arXiv Detail & Related papers (2021-08-19T15:39:52Z) - A Robust and Generalized Framework for Adversarial Graph Embedding [73.37228022428663]
We propose a robust framework for adversarial graph embedding, named AGE.
AGE generates the fake neighbor nodes as the enhanced negative samples from the implicit distribution.
Based on this framework, we propose three models to handle three types of graph data.
arXiv Detail & Related papers (2021-05-22T07:05:48Z) - Meta-Learning with Graph Neural Networks: Methods and Applications [5.804439462187914]
Graph Neural Networks (GNNs) are generalizations of deep neural networks on graph data.
GNNs are limited when there are few available samples.
In recent years, researchers have started to apply meta-learning to GNNs.
arXiv Detail & Related papers (2021-02-27T06:19:11Z) - SDGNN: Learning Node Representation for Signed Directed Networks [43.15277366961127]
Graph Neural Networks (GNNs) have received widespread attention and lead to state-of-the-art performance in learning node representations.
It is not trivial to transfer these models to signed directed networks, which are widely observed in the real world yet less studied.
We propose a novel Signed Directed Graph Neural Networks model named SDGNN to learn node embeddings for signed directed networks.
arXiv Detail & Related papers (2021-01-07T06:15:07Z) - A Survey of Community Detection Approaches: From Statistical Modeling to
Deep Learning [95.27249880156256]
We develop and present a unified architecture of network community-finding methods.
We introduce a new taxonomy that divides the existing methods into two categories, namely probabilistic graphical model and deep learning.
We conclude with discussions of the challenges of the field and suggestions of possible directions for future research.
arXiv Detail & Related papers (2021-01-03T02:32:45Z) - Signed Graph Diffusion Network [17.20546861491478]
Given a signed social graph, how can we learn appropriate node representations to infer the signs of missing edges?
We propose Signed Graph Diffusion Network (SGDNet), a novel graph neural network that achieves end-to-end node representation learning for link sign prediction in signed social graphs.
arXiv Detail & Related papers (2020-12-28T11:08:30Z) - A Survey on Heterogeneous Graph Embedding: Methods, Techniques,
Applications and Sources [79.48829365560788]
Heterogeneous graphs (HGs) also known as heterogeneous information networks have become ubiquitous in real-world scenarios.
HG embedding aims to learn representations in a lower-dimension space while preserving the heterogeneous structures and semantics for downstream tasks.
arXiv Detail & Related papers (2020-11-30T15:03:47Z) - Interpretable Signed Link Prediction with Signed Infomax Hyperbolic
Graph [54.03786611989613]
signed link prediction in social networks aims to reveal the underlying relationships (i.e. links) among users (i.e. nodes)
We develop a unified framework, termed as Signed Infomax Hyperbolic Graph (textbfSIHG)
In order to model high-order user relations and complex hierarchies, the node embeddings are projected and measured in a hyperbolic space with a lower distortion.
arXiv Detail & Related papers (2020-11-25T05:09:03Z) - Graph Prototypical Networks for Few-shot Learning on Attributed Networks [72.31180045017835]
We propose a graph meta-learning framework -- Graph Prototypical Networks (GPN)
GPN is able to perform textitmeta-learning on an attributed network and derive a highly generalizable model for handling the target classification task.
arXiv Detail & Related papers (2020-06-23T04:13:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.