Deep Clustering of Remote Sensing Scenes through Heterogeneous Transfer Learning
- URL: http://arxiv.org/abs/2409.03938v1
- Date: Thu, 5 Sep 2024 23:07:21 GMT
- Title: Deep Clustering of Remote Sensing Scenes through Heterogeneous Transfer Learning
- Authors: Isaac Ray, Alexei Skurikhin,
- Abstract summary: This paper proposes a method for unsupervised whole-image clustering of a target dataset of remote sensing scenes with no labels.
We demonstrate the performance of this approach outperforming state-of-the-art zero-shot classification methods on several remote sensing scene classification datasets.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper proposes a method for unsupervised whole-image clustering of a target dataset of remote sensing scenes with no labels. The method consists of three main steps: (1) finetuning a pretrained deep neural network (DINOv2) on a labelled source remote sensing imagery dataset and using it to extract a feature vector from each image in the target dataset, (2) reducing the dimension of these deep features via manifold projection into a low-dimensional Euclidean space, and (3) clustering the embedded features using a Bayesian nonparametric technique to infer the number and membership of clusters simultaneously. The method takes advantage of heterogeneous transfer learning to cluster unseen data with different feature and label distributions. We demonstrate the performance of this approach outperforming state-of-the-art zero-shot classification methods on several remote sensing scene classification datasets.
Related papers
- SegVG: Transferring Object Bounding Box to Segmentation for Visual Grounding [56.079013202051094]
We present SegVG, a novel method transfers the box-level annotation as signals to provide an additional pixel-level supervision for Visual Grounding.
This approach allows us to iteratively exploit the annotation as signals for both box-level regression and pixel-level segmentation.
arXiv Detail & Related papers (2024-07-03T15:30:45Z) - Semi-supervised segmentation of land cover images using nonlinear
canonical correlation analysis with multiple features and t-SNE [1.7000283696243563]
Image segmentation is a clustering task whereby each pixel is assigned a cluster label.
In this work, by resorting to label only a small quantity of pixels, a new semi-supervised segmentation approach is proposed.
The proposed semi-supervised RBF-CCA algorithm has been implemented on several remotely sensed multispectral images.
arXiv Detail & Related papers (2024-01-22T17:56:07Z) - Generalized Category Discovery with Clustering Assignment Consistency [56.92546133591019]
Generalized category discovery (GCD) is a recently proposed open-world task.
We propose a co-training-based framework that encourages clustering consistency.
Our method achieves state-of-the-art performance on three generic benchmarks and three fine-grained visual recognition datasets.
arXiv Detail & Related papers (2023-10-30T00:32:47Z) - 3DMODT: Attention-Guided Affinities for Joint Detection & Tracking in 3D
Point Clouds [95.54285993019843]
We propose a method for joint detection and tracking of multiple objects in 3D point clouds.
Our model exploits temporal information employing multiple frames to detect objects and track them in a single network.
arXiv Detail & Related papers (2022-11-01T20:59:38Z) - 360 Depth Estimation in the Wild -- The Depth360 Dataset and the SegFuse
Network [35.03201732370496]
Single-view depth estimation from omnidirectional images has gained popularity with its wide range of applications such as autonomous driving and scene reconstruction.
In this work, we first establish a large-scale dataset with varied settings called Depth360 to tackle the training data problem.
We then propose an end-to-end two-branch multi-task learning network, SegFuse, that mimics the human eye to effectively learn from the dataset.
arXiv Detail & Related papers (2022-02-16T11:56:31Z) - Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D
Object Detection [85.11649974840758]
3D object detection networks tend to be biased towards the data they are trained on.
We propose a single-frame approach for source-free, unsupervised domain adaptation of lidar-based 3D object detectors.
arXiv Detail & Related papers (2021-11-30T18:42:42Z) - Clustering augmented Self-Supervised Learning: Anapplication to Land
Cover Mapping [10.720852987343896]
We introduce a new method for land cover mapping by using a clustering based pretext task for self-supervised learning.
We demonstrate the effectiveness of the method on two societally relevant applications.
arXiv Detail & Related papers (2021-08-16T19:35:43Z) - Clustering by Maximizing Mutual Information Across Views [62.21716612888669]
We propose a novel framework for image clustering that incorporates joint representation learning and clustering.
Our method significantly outperforms state-of-the-art single-stage clustering methods across a variety of image datasets.
arXiv Detail & Related papers (2021-07-24T15:36:49Z) - Rank-Consistency Deep Hashing for Scalable Multi-Label Image Search [90.30623718137244]
We propose a novel deep hashing method for scalable multi-label image search.
A new rank-consistency objective is applied to align the similarity orders from two spaces.
A powerful loss function is designed to penalize the samples whose semantic similarity and hamming distance are mismatched.
arXiv Detail & Related papers (2021-02-02T13:46:58Z) - Learn by Guessing: Multi-Step Pseudo-Label Refinement for Person
Re-Identification [0.0]
A promising approach relies on the use of unsupervised learning as part of the pipeline.
In this work, we propose a multi-step pseudo-label refinement method to select the best possible clusters.
We surpass state-of-the-art for UDA Re-ID by 3.4% on Market1501-DukeMTMC datasets.
arXiv Detail & Related papers (2021-01-04T20:00:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.