論文の概要: On The Role of Prompt Construction In Enhancing Efficacy and Efficiency of LLM-Based Tabular Data Generation
- arxiv url: http://arxiv.org/abs/2409.03946v1
- Date: Fri, 6 Sep 2024 00:02:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-09 17:10:39.997469
- Title: On The Role of Prompt Construction In Enhancing Efficacy and Efficiency of LLM-Based Tabular Data Generation
- Title(参考訳): LLMデータ生成の効率化と効率化におけるプロンプト構築の役割について
- Authors: Banooqa Banday, Kowshik Thopalli, Tanzima Z. Islam, Jayaraman J. Thiagarajan,
- Abstract要約: 本稿では, エキスパート誘導, LLM誘導, ノベル・マッピングの3つのプロプライエタリ・コンストラクションプロトコルについて検討する。
文脈に富んだプロンプトは、データ生成の品質とトレーニング効率を大幅に向上させる。
- 参考スコア(独自算出の注目度): 16.79923685316516
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: LLM-based data generation for real-world tabular data can be challenged by the lack of sufficient semantic context in feature names used to describe columns. We hypothesize that enriching prompts with domain-specific insights can improve both the quality and efficiency of data generation. To test this hypothesis, we explore three prompt construction protocols: Expert-guided, LLM-guided, and Novel-Mapping. Through empirical studies with the recently proposed GReaT framework, we find that context-enriched prompts lead to significantly improved data generation quality and training efficiency.
- Abstract(参考訳): 実世界の表データのためのLLMベースのデータ生成は、列を記述するために使われる機能名に十分な意味的コンテキストが欠如しているため、問題となることがある。
我々は、ドメイン固有の洞察でリッチなプロンプトは、データ生成の品質と効率の両方を改善することができると仮定する。
この仮説を検証するために, エキスパート誘導, LLM誘導, ノベル・マッピングの3つのプロプライエタリな構築プロトコルを探索する。
最近提案されたGReaTフレームワークによる実証研究により、文脈に富んだプロンプトがデータ生成の品質とトレーニング効率を大幅に向上させることがわかった。
関連論文リスト
- Evaluating LLM Prompts for Data Augmentation in Multi-label Classification of Ecological Texts [1.565361244756411]
大規模言語モデル(LLM)は自然言語処理(NLP)タスクにおいて重要な役割を果たす。
本研究では,ロシアのソーシャルメディアにおけるグリーンプラクティスの言及を検出するために,プロンプトベースのデータ拡張を適用した。
論文 参考訳(メタデータ) (2024-11-22T12:37:41Z) - Unleashing the Power of Large Language Models in Zero-shot Relation Extraction via Self-Prompting [21.04933334040135]
本稿では,大規模言語モデルに組み込まれたRE知識を十分に活用する新しい手法であるSelf-Promptingフレームワークを紹介する。
我々のフレームワークは3段階の多様性アプローチを用いてLSMを誘導し、スクラッチから特定の関係をカプセル化する複数の合成サンプルを生成する。
ベンチマークデータセットを用いた実験により,既存のLCMベースのゼロショットRE法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2024-10-02T01:12:54Z) - Enhancing Temporal Understanding in LLMs for Semi-structured Tables [50.59009084277447]
我々は、大規模言語モデル(LLM)の特定の限界を特定するために、時間的データセットの包括的な分析を行う。
調査の結果,時間的時間的質問応答に特化したデータセットであるTempTabQAが強化された。
我々は,この領域におけるLLM機能を強化するために,新しいアプローチC.L.E.A.R.を導入する。
論文 参考訳(メタデータ) (2024-07-22T20:13:10Z) - Systematic Task Exploration with LLMs: A Study in Citation Text Generation [63.50597360948099]
大規模言語モデル(LLM)は、複雑な創造的自然言語生成(NLG)タスクの定義と実行において、前例のない柔軟性をもたらす。
本稿では,系統的な入力操作,参照データ,出力測定からなる3成分研究フレームワークを提案する。
我々はこのフレームワークを用いて引用テキスト生成を探索する。これは一般的なNLPタスクであり、タスク定義と評価基準に関するコンセンサスを欠いている。
論文 参考訳(メタデータ) (2024-07-04T16:41:08Z) - CLAIM Your Data: Enhancing Imputation Accuracy with Contextual Large Language Models [0.18416014644193068]
本稿では,精度インプット法(CLAIM)の文脈言語モデルを提案する。
従来の計算法とは異なり、CLAIMは文脈に関連のある自然言語記述子を使用して、欠落した値を埋める。
多様なデータセットや欠落パターンに対する評価は,既存の計算手法よりもCLAIMの方が優れた性能を示している。
論文 参考訳(メタデータ) (2024-05-28T00:08:29Z) - Novel Preprocessing Technique for Data Embedding in Engineering Code
Generation Using Large Language Model [7.74830226656449]
ドメイン固有コード生成におけるLarge Language Models(LLM)の性能向上に寄与する4つの主な貢献について述べる。
本稿では,LLMによって駆動されるCDRC(Chein of Density for Renovation Credibility)と,データ信頼性を評価するAdaptive Text Renovation(ATR)アルゴリズムを紹介する。
また,Implicit Knowledge Expansion and Contemplation (IKEC) Prompt技術を開発した。
論文 参考訳(メタデータ) (2023-11-27T19:17:39Z) - Reflection-Tuning: Data Recycling Improves LLM Instruction-Tuning [79.32236399694077]
トレーニングセットの低品質データは、通常、チューニングのチューニングに有害である。
我々は「反射チューニング」と呼ばれる新しい手法を提案する。
このアプローチでは、オラクルLSMを使用して、データ内の命令や応答の質を検査し、向上することで、元のトレーニングデータをリサイクルする。
論文 参考訳(メタデータ) (2023-10-18T05:13:47Z) - StructGPT: A General Framework for Large Language Model to Reason over
Structured Data [117.13986738340027]
我々は,構造化データに基づく質問応答タスクの解法として,emphIterative Reading-then-Reasoning(IRR)アプローチを開発した。
提案手法はChatGPTの性能を大幅に向上させ,全データの教師付きベースラインに対して同等のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-05-16T17:45:23Z) - Explaining Patterns in Data with Language Models via Interpretable
Autoprompting [143.4162028260874]
本稿では,データを説明する自然言語文字列を生成するアルゴリズムである,解釈可能なオートプロンプト(iPrompt)を提案する。
iPromptは、基盤となるデータセット記述を正確に見つけることで、意味のある洞察を得ることができる。
fMRIデータセットを用いた実験は、iPromptが科学的発見に役立つ可能性を示している。
論文 参考訳(メタデータ) (2022-10-04T18:32:14Z) - SDA: Improving Text Generation with Self Data Augmentation [88.24594090105899]
自動データ拡張のための自己模倣学習フェーズを組み込むことにより,標準最大確率推定(MLE)パラダイムを改善することを提案する。
既存の文レベルの拡張戦略とは異なり,本手法はより汎用的で,任意のMLEベースの訓練手順に容易に適応できる。
論文 参考訳(メタデータ) (2021-01-02T01:15:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。