Average Causal Effect Estimation in DAGs with Hidden Variables: Extensions of Back-Door and Front-Door Criteria
- URL: http://arxiv.org/abs/2409.03962v1
- Date: Fri, 6 Sep 2024 01:07:29 GMT
- Title: Average Causal Effect Estimation in DAGs with Hidden Variables: Extensions of Back-Door and Front-Door Criteria
- Authors: Anna Guo, Razieh Nabi,
- Abstract summary: We develop one-step corrected plug-in and targeted minimum loss-based estimators of causal effects for a class of directed aparametric graphs (DAGs) with hidden variables.
We leverage machine learning to minimize modeling assumptions while ensuring key statistical properties such as linear primality, double robustness, efficiency, and staying within the bounds of the target parameter space.
- Score: 3.0232957374216953
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The identification theory for causal effects in directed acyclic graphs (DAGs) with hidden variables is well-developed, but methods for estimating and inferring functionals beyond the g-formula remain limited. Previous studies have proposed semiparametric estimators for identifiable functionals in a broad class of DAGs with hidden variables. While demonstrating double robustness in some models, existing estimators face challenges, particularly with density estimation and numerical integration for continuous variables, and their estimates may fall outside the parameter space of the target estimand. Their asymptotic properties are also underexplored, especially when using flexible statistical and machine learning models for nuisance estimation. This study addresses these challenges by introducing novel one-step corrected plug-in and targeted minimum loss-based estimators of causal effects for a class of DAGs that extend classical back-door and front-door criteria (known as the treatment primal fixability criterion in prior literature). These estimators leverage machine learning to minimize modeling assumptions while ensuring key statistical properties such as asymptotic linearity, double robustness, efficiency, and staying within the bounds of the target parameter space. We establish conditions for nuisance functional estimates in terms of L2(P)-norms to achieve root-n consistent causal effect estimates. To facilitate practical application, we have developed the flexCausal package in R.
Related papers
- Predictability Analysis of Regression Problems via Conditional Entropy Estimations [1.8913544072080544]
Conditional entropy estimators are developed to assess predictability in regression problems.
Experiments on synthesized and real-world datasets demonstrate the robustness and utility of these estimators.
arXiv Detail & Related papers (2024-06-06T07:59:19Z) - Targeted Machine Learning for Average Causal Effect Estimation Using the
Front-Door Functional [3.0232957374216953]
evaluating the average causal effect (ACE) of a treatment on an outcome often involves overcoming the challenges posed by confounding factors in observational studies.
Here, we introduce novel estimation strategies for the front-door criterion based on the targeted minimum loss-based estimation theory.
We demonstrate the applicability of these estimators to analyze the effect of early stage academic performance on future yearly income.
arXiv Detail & Related papers (2023-12-15T22:04:53Z) - A PAC-Bayesian Perspective on the Interpolating Information Criterion [54.548058449535155]
We show how a PAC-Bayes bound is obtained for a general class of models, characterizing factors which influence performance in the interpolating regime.
We quantify how the test error for overparameterized models achieving effectively zero training error depends on the quality of the implicit regularization imposed by e.g. the combination of model, parameter-initialization scheme.
arXiv Detail & Related papers (2023-11-13T01:48:08Z) - Doubly Robust Proximal Causal Learning for Continuous Treatments [56.05592840537398]
We propose a kernel-based doubly robust causal learning estimator for continuous treatments.
We show that its oracle form is a consistent approximation of the influence function.
We then provide a comprehensive convergence analysis in terms of the mean square error.
arXiv Detail & Related papers (2023-09-22T12:18:53Z) - Orthogonal Series Estimation for the Ratio of Conditional Expectation
Functions [2.855485723554975]
This chapter develops the general framework for estimation and inference on conditional expectation functions (CEFR)
We derive the pointwise and uniform results for estimation and inference on CEFR, including the validity of the Gaussian bootstrap.
We apply the proposed method to estimate the causal effect of the 401(k) program on household assets.
arXiv Detail & Related papers (2022-12-26T13:01:17Z) - Data-Driven Influence Functions for Optimization-Based Causal Inference [105.5385525290466]
We study a constructive algorithm that approximates Gateaux derivatives for statistical functionals by finite differencing.
We study the case where probability distributions are not known a priori but need to be estimated from data.
arXiv Detail & Related papers (2022-08-29T16:16:22Z) - Adaptive LASSO estimation for functional hidden dynamic geostatistical
model [69.10717733870575]
We propose a novel model selection algorithm based on a penalized maximum likelihood estimator (PMLE) for functional hiddenstatistical models (f-HD)
The algorithm is based on iterative optimisation and uses an adaptive least absolute shrinkage and selector operator (GMSOLAS) penalty function, wherein the weights are obtained by the unpenalised f-HD maximum-likelihood estimators.
arXiv Detail & Related papers (2022-08-10T19:17:45Z) - BCD Nets: Scalable Variational Approaches for Bayesian Causal Discovery [97.79015388276483]
A structural equation model (SEM) is an effective framework to reason over causal relationships represented via a directed acyclic graph (DAG)
Recent advances enabled effective maximum-likelihood point estimation of DAGs from observational data.
We propose BCD Nets, a variational framework for estimating a distribution over DAGs characterizing a linear-Gaussian SEM.
arXiv Detail & Related papers (2021-12-06T03:35:21Z) - When in Doubt: Neural Non-Parametric Uncertainty Quantification for
Epidemic Forecasting [70.54920804222031]
Most existing forecasting models disregard uncertainty quantification, resulting in mis-calibrated predictions.
Recent works in deep neural models for uncertainty-aware time-series forecasting also have several limitations.
We model the forecasting task as a probabilistic generative process and propose a functional neural process model called EPIFNP.
arXiv Detail & Related papers (2021-06-07T18:31:47Z) - Fundamental Limits of Ridge-Regularized Empirical Risk Minimization in
High Dimensions [41.7567932118769]
Empirical Risk Minimization algorithms are widely used in a variety of estimation and prediction tasks.
In this paper, we characterize for the first time the fundamental limits on the statistical accuracy of convex ERM for inference.
arXiv Detail & Related papers (2020-06-16T04:27:38Z) - Semiparametric Inference For Causal Effects In Graphical Models With
Hidden Variables [13.299431908881425]
Identification theory for causal effects in causal models associated with hidden variable directed acyclic graphs is well studied.
corresponding algorithms are underused due to the complexity of estimating the identifying functionals they output.
We bridge the gap between identification and estimation of population-level causal effects involving a single treatment and a single outcome.
arXiv Detail & Related papers (2020-03-27T22:29:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.