BFA-YOLO: Balanced multiscale object detection network for multi-view building facade attachments detection
- URL: http://arxiv.org/abs/2409.04025v1
- Date: Fri, 6 Sep 2024 04:44:52 GMT
- Title: BFA-YOLO: Balanced multiscale object detection network for multi-view building facade attachments detection
- Authors: Yangguang Chen, Tong Wang, Guanzhou Chen, Kun Zhu, Xiaoliang Tan, Jiaqi Wang, Hong Xie, Wenlin Zhou, Jingyi Zhao, Qing Wang, Xiaolong Luo, Xiaodong Zhang,
- Abstract summary: Detection of building facade attachments plays a pivotal role in numerous applications.
It faces challenges like uneven object distribution, small object detection difficulty, and background interference.
We propose BFA-YOLO, a model for detecting facade attachments in multi-view images.
- Score: 26.46161284011197
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Detection of building facade attachments such as doors, windows, balconies, air conditioner units, billboards, and glass curtain walls plays a pivotal role in numerous applications. Building facade attachments detection aids in vbuilding information modeling (BIM) construction and meeting Level of Detail 3 (LOD3) standards. Yet, it faces challenges like uneven object distribution, small object detection difficulty, and background interference. To counter these, we propose BFA-YOLO, a model for detecting facade attachments in multi-view images. BFA-YOLO incorporates three novel innovations: the Feature Balanced Spindle Module (FBSM) for addressing uneven distribution, the Target Dynamic Alignment Task Detection Head (TDATH) aimed at improving small object detection, and the Position Memory Enhanced Self-Attention Mechanism (PMESA) to combat background interference, with each component specifically designed to solve its corresponding challenge. Detection efficacy of deep network models deeply depends on the dataset's characteristics. Existing open source datasets related to building facades are limited by their single perspective, small image pool, and incomplete category coverage. We propose a novel method for building facade attachments detection dataset construction and construct the BFA-3D dataset for facade attachments detection. The BFA-3D dataset features multi-view, accurate labels, diverse categories, and detailed classification. BFA-YOLO surpasses YOLOv8 by 1.8% and 2.9% in mAP@0.5 on the multi-view BFA-3D and street-view Facade-WHU datasets, respectively. These results underscore BFA-YOLO's superior performance in detecting facade attachments.
Related papers
- Progressive Multi-Modal Fusion for Robust 3D Object Detection [12.048303829428452]
Existing methods perform sensor fusion in a single view by projecting features from both modalities either in Bird's Eye View (BEV) or Perspective View (PV)
We propose ProFusion3D, a progressive fusion framework that combines features in both BEV and PV at both intermediate and object query levels.
Our architecture hierarchically fuses local and global features, enhancing the robustness of 3D object detection.
arXiv Detail & Related papers (2024-10-09T22:57:47Z) - MMScan: A Multi-Modal 3D Scene Dataset with Hierarchical Grounded Language Annotations [55.022519020409405]
This paper builds the first largest ever multi-modal 3D scene dataset and benchmark with hierarchical grounded language annotations, MMScan.
The resulting multi-modal 3D dataset encompasses 1.4M meta-annotated captions on 109k objects and 7.7k regions as well as over 3.04M diverse samples for 3D visual grounding and question-answering benchmarks.
arXiv Detail & Related papers (2024-06-13T17:59:30Z) - PoIFusion: Multi-Modal 3D Object Detection via Fusion at Points of Interest [65.48057241587398]
PoIFusion is a framework to fuse information of RGB images and LiDAR point clouds at the points of interest (PoIs)
Our approach maintains the view of each modality and obtains multi-modal features by computation-friendly projection and computation.
We conducted extensive experiments on nuScenes and Argoverse2 datasets to evaluate our approach.
arXiv Detail & Related papers (2024-03-14T09:28:12Z) - Towards Unified 3D Object Detection via Algorithm and Data Unification [70.27631528933482]
We build the first unified multi-modal 3D object detection benchmark MM- Omni3D and extend the aforementioned monocular detector to its multi-modal version.
We name the designed monocular and multi-modal detectors as UniMODE and MM-UniMODE, respectively.
arXiv Detail & Related papers (2024-02-28T18:59:31Z) - SCA-PVNet: Self-and-Cross Attention Based Aggregation of Point Cloud and
Multi-View for 3D Object Retrieval [8.74845857766369]
Multi-modality 3D object retrieval is rarely developed and analyzed on large-scale datasets.
We propose self-and-cross attention based aggregation of point cloud and multi-view images (SCA-PVNet) for 3D object retrieval.
arXiv Detail & Related papers (2023-07-20T05:46:32Z) - AOP-Net: All-in-One Perception Network for Joint LiDAR-based 3D Object
Detection and Panoptic Segmentation [9.513467995188634]
AOP-Net is a LiDAR-based multi-task framework that combines 3D object detection and panoptic segmentation.
The AOP-Net achieves state-of-the-art performance for published works on the nuScenes benchmark for both 3D object detection and panoptic segmentation tasks.
arXiv Detail & Related papers (2023-02-02T05:31:53Z) - The Devil is in the Task: Exploiting Reciprocal Appearance-Localization
Features for Monocular 3D Object Detection [62.1185839286255]
Low-cost monocular 3D object detection plays a fundamental role in autonomous driving.
We introduce a Dynamic Feature Reflecting Network, named DFR-Net.
We rank 1st among all the monocular 3D object detectors in the KITTI test set.
arXiv Detail & Related papers (2021-12-28T07:31:18Z) - Personal Fixations-Based Object Segmentation with Object Localization
and Boundary Preservation [60.41628937597989]
We focus on Personal Fixations-based Object (PFOS) to address issues in previous studies.
We propose a novel network based on Object Localization and Boundary Preservation (OLBP) to segment the gazed objects.
OLBP is organized in the mixed bottom-up and top-down manner with multiple types of deep supervision.
arXiv Detail & Related papers (2021-01-22T09:20:47Z) - Multi-View Adaptive Fusion Network for 3D Object Detection [14.506796247331584]
3D object detection based on LiDAR-camera fusion is becoming an emerging research theme for autonomous driving.
We propose a single-stage multi-view fusion framework that takes LiDAR bird's-eye view, LiDAR range view and camera view images as inputs for 3D object detection.
We design an end-to-end learnable network named MVAF-Net to integrate these two components.
arXiv Detail & Related papers (2020-11-02T00:06:01Z) - Cross-layer Feature Pyramid Network for Salient Object Detection [102.20031050972429]
We propose a novel Cross-layer Feature Pyramid Network to improve the progressive fusion in salient object detection.
The distributed features per layer own both semantics and salient details from all other layers simultaneously, and suffer reduced loss of important information.
arXiv Detail & Related papers (2020-02-25T14:06:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.