論文の概要: Smooth-edged Perturbations Improve Perturbation-based Image Explanations
- arxiv url: http://arxiv.org/abs/2409.04116v1
- Date: Fri, 6 Sep 2024 08:33:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-09 16:25:56.261400
- Title: Smooth-edged Perturbations Improve Perturbation-based Image Explanations
- Title(参考訳): Smooth-edged Perturbationsは摂動に基づく画像説明を改善する
- Authors: Gustav Grund Pihlgren, Kary Främling,
- Abstract要約: 摂動に基づくポストホック画像説明法は、画像予測モデルを説明するために一般的に用いられる。
個々のピクセルを個別に摂動させることの難しさのため、画像は典型的にはより大きなセグメントに起因している。
この研究は、マスクサンプリング、セグメンテーション技術、スムース化、帰属計算の多くの組み合わせをテストする。
- 参考スコア(独自算出の注目度): 1.1663475941322277
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Perturbation-based post-hoc image explanation methods are commonly used to explain image prediction models by perturbing parts of the input to measure how those parts affect the output. Due to the intractability of perturbing each pixel individually, images are typically attributed to larger segments. The Randomized Input Sampling for Explanations (RISE) method solved this issue by using smooth perturbation masks. While this method has proven effective and popular, it has not been investigated which parts of the method are responsible for its success. This work tests many combinations of mask sampling, segmentation techniques, smoothing, and attribution calculation. The results show that the RISE-style pixel attribution is beneficial to all evaluated methods. Furthermore, it is shown that attribution calculation is the least impactful parameter. The implementation of this work is available online: https://github.com/guspih/post-hoc-image-perturbation.
- Abstract(参考訳): 摂動に基づくポストホック画像説明法は、入力の一部を摂動することで画像予測モデルを説明するために一般的に用いられる。
個々のピクセルを個別に摂動させることの難しさのため、画像は典型的にはより大きなセグメントに起因している。
ランダム化入力サンプリング(RISE)法は,スムーズな摂動マスクを用いてこの問題を解決した。
この手法は有効で普及していると証明されているが、どの部分が成功に寄与しているかは研究されていない。
この研究は、マスクサンプリング、セグメンテーション技術、スムーシング、帰属計算の多くの組み合わせをテストする。
その結果,RISE方式の画素属性はすべての評価手法に有益であることが示唆された。
さらに、帰属計算が最も影響の少ないパラメータであることが示されている。
https://github.com/guspih/post-hoc-image-perturbation.com/post-hoc-image-perturbation.com では、この作業の実装がオンラインで公開されている。
関連論文リスト
- UnSeg: One Universal Unlearnable Example Generator is Enough against All Image Segmentation [64.01742988773745]
未承認のプライベートデータ上での大規模なイメージセグメンテーションモデルのトレーニングに関して、プライバシーに関する懸念が高まっている。
我々は、学習不可能な例の概念を利用して、学習不可能なノイズを原画像に生成し、付加することにより、モデルトレーニングに使用不能な画像を作成する。
6つのメインストリームイメージセグメンテーションタスク、10つの広く使われているデータセット、7つの異なるネットワークアーキテクチャでUnSegの有効性を実証的に検証する。
論文 参考訳(メタデータ) (2024-10-13T16:34:46Z) - SegRefiner: Towards Model-Agnostic Segmentation Refinement with Discrete
Diffusion Process [102.18226145874007]
そこで我々は,異なるセグメンテーションモデルによって生成されるオブジェクトマスクの品質を高めるために,SegRefinerと呼ばれるモデルに依存しないソリューションを提案する。
SegRefinerは粗いマスクを入力として取り、離散拡散プロセスを用いてそれらを洗練する。
さまざまな種類の粗いマスクにわたるセグメンテーションメトリックとバウンダリメトリックの両方を一貫して改善する。
論文 参考訳(メタデータ) (2023-12-19T18:53:47Z) - A Generalist Framework for Panoptic Segmentation of Images and Videos [61.61453194912186]
我々は,タスクの帰納バイアスに頼ることなく,離散的なデータ生成問題としてパノプティクスセグメンテーションを定式化する。
単純な構造と一般的な損失関数を持つパノスコープマスクをモデル化するための拡散モデルを提案する。
本手法は,動画を(ストリーミング環境で)モデル化し,オブジェクトのインスタンスを自動的に追跡することを学ぶ。
論文 参考訳(メタデータ) (2022-10-12T16:18:25Z) - Interpretations Steered Network Pruning via Amortized Inferred Saliency
Maps [85.49020931411825]
限られたリソースを持つエッジデバイスにこれらのモデルをデプロイするには、畳み込みニューラルネットワーク(CNN)圧縮が不可欠である。
本稿では,新しい視点からチャネルプルーニング問題に対処するために,モデルの解釈を活用して,プルーニング過程を解析する手法を提案する。
本研究では,実時間スムーズなスムーズなスムーズなスムーズなマスク予測を行うセレクタモデルを導入することで,この問題に対処する。
論文 参考訳(メタデータ) (2022-09-07T01:12:11Z) - Estimating Appearance Models for Image Segmentation via Tensor Factorization [0.0]
本稿では,画像からの外観モデルを直接推定する手法を提案する。
本手法は,潜時変モデルに対するテンソル分解に基づく推定器への入力として,画像からの局所的な高次色統計値を用いる。
このアプローチは、マルチリージョン画像のモデルを推定し、事前のユーザインタラクションなしで自動的にリージョン比を出力することができる。
論文 参考訳(メタデータ) (2022-08-16T17:21:00Z) - A Bhattacharyya Coefficient-Based Framework for Noise Model-Aware Random
Walker Image Segmentation [3.899824115379246]
本稿では,確率的モデリングに基づく重み関数の導出に関する一般的な枠組みを提案する。
このフレームワークは、ほぼどんなよく定義されたノイズモデルにも対処できる。
バイオメディカルな画像データだけでなく、合成データにも優れた性能を示す。
論文 参考訳(メタデータ) (2022-06-02T09:21:52Z) - Few-shot semantic segmentation via mask aggregation [5.886986014593717]
セマンティックセグメンテーションは、ラベル付きデータが少ない新しいクラスを認識することを目的としている。
従来の研究では、これをピクセル単位の分類問題と見なしていた。
この問題に対処するためのマスクベースの分類手法を提案する。
論文 参考訳(メタデータ) (2022-02-15T07:13:09Z) - Diffusion Models for Implicit Image Segmentation Ensembles [1.444701913511243]
拡散モデルに基づく新しいセマンティックセグメンテーション手法を提案する。
トレーニングとサンプリングの手法を改良することにより,拡散モデルが医用画像の病変分割を行うことができることを示す。
最先端セグメンテーションモデルと比較して,本手法は良好なセグメンテーション結果と有意義な不確実性マップが得られる。
論文 参考訳(メタデータ) (2021-12-06T16:28:15Z) - SegDiff: Image Segmentation with Diffusion Probabilistic Models [81.16986859755038]
拡散確率法は最先端の画像生成に使用される。
画像分割を行うためにそのようなモデルを拡張する方法を提案する。
この方法は、トレーニング済みのバックボーンに頼ることなく、エンドツーエンドで学習する。
論文 参考訳(メタデータ) (2021-12-01T10:17:25Z) - BoundarySqueeze: Image Segmentation as Boundary Squeezing [104.43159799559464]
本研究では,オブジェクトとシーンの微細な高画質画像分割のための新しい手法を提案する。
形態素画像処理技術による拡張と浸食に着想を得て,画素レベルのセグメンテーション問題をスクイーズ対象境界として扱う。
提案手法は,COCO,Cityscapesのインスタンス・セグメンテーション・セグメンテーション・セグメンテーションにおいて大きく向上し,同一条件下での精度・速度ともに従来のPointRendよりも優れていた。
論文 参考訳(メタデータ) (2021-05-25T04:58:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。