論文の概要: Reprojection Errors as Prompts for Efficient Scene Coordinate Regression
- arxiv url: http://arxiv.org/abs/2409.04178v1
- Date: Fri, 6 Sep 2024 10:43:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-09 16:05:19.666488
- Title: Reprojection Errors as Prompts for Efficient Scene Coordinate Regression
- Title(参考訳): 効率的なシーン調整レグレッションのためのプロンプトとしての再ジェクションエラー
- Authors: Ting-Ru Liu, Hsuan-Kung Yang, Jou-Min Liu, Chun-Wei Huang, Tsung-Chih Chiang, Quan Kong, Norimasa Kobori, Chun-Yi Lee,
- Abstract要約: シーン座標回帰(SCR)法は、正確な視覚的位置決めの可能性から、将来的な研究分野として浮上している。
既存のSCRアプローチの多くは、動的オブジェクトやテクスチャレス領域を含む、すべてのイメージ領域からのサンプルをトレーニングする。
我々は,Segment Anything Model (SAM) を用いて,誤り誘導型特徴選択機構を導入する。
このメカニズムは、プロンプトとして低い再投射領域を発生させ、それらをエラー誘導マスクに拡張し、これらのマスクを使用して点をサンプリングし、問題領域を反復的にフィルタリングする。
- 参考スコア(独自算出の注目度): 9.039259735902625
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Scene coordinate regression (SCR) methods have emerged as a promising area of research due to their potential for accurate visual localization. However, many existing SCR approaches train on samples from all image regions, including dynamic objects and texture-less areas. Utilizing these areas for optimization during training can potentially hamper the overall performance and efficiency of the model. In this study, we first perform an in-depth analysis to validate the adverse impacts of these areas. Drawing inspiration from our analysis, we then introduce an error-guided feature selection (EGFS) mechanism, in tandem with the use of the Segment Anything Model (SAM). This mechanism seeds low reprojection areas as prompts and expands them into error-guided masks, and then utilizes these masks to sample points and filter out problematic areas in an iterative manner. The experiments demonstrate that our method outperforms existing SCR approaches that do not rely on 3D information on the Cambridge Landmarks and Indoor6 datasets.
- Abstract(参考訳): シーン座標回帰(SCR)法は、正確な視覚的位置決めの可能性から、将来的な研究分野として浮上している。
しかしながら、既存のSCRアプローチの多くは、動的オブジェクトやテクスチャレス領域を含む、すべてのイメージ領域からのサンプルをトレーニングしている。
トレーニング中にこれらの領域を最適化するために利用すると、モデル全体のパフォーマンスと効率を損なう可能性がある。
本研究では,これらの領域の有害な影響を検証するために,まず奥行き分析を行う。
分析からインスピレーションを得た上で,Segment Anything Model (SAM) を用いて誤り誘導特徴選択(EGFS)機構を導入する。
このメカニズムは、プロンプトとして低い再投射領域を発生させ、それらをエラー誘導マスクに拡張し、これらのマスクを使用して点をサンプリングし、問題領域を反復的にフィルタリングする。
提案手法は,ケンブリッジランドマークとインドア6データセットの3次元情報に依存しない既存のSCR手法よりも優れていることを示す。
関連論文リスト
- Adaptive Masking Enhances Visual Grounding [12.793586888511978]
ローショット学習シナリオにおける語彙接地を改善するために,ガウス放射変調を用いた画像解釈型マスキングを提案する。
我々はCOCOやODinWを含むベンチマークデータセットに対するアプローチの有効性を評価し、ゼロショットタスクや少数ショットタスクにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2024-10-04T05:48:02Z) - Self-supervised Feature Adaptation for 3D Industrial Anomaly Detection [59.41026558455904]
具体的には,大規模ビジュアルデータセット上で事前学習されたモデルを利用した初期のマルチモーダルアプローチについて検討する。
本研究では,アダプタを微調整し,異常検出に向けたタスク指向の表現を学習するためのLSFA法を提案する。
論文 参考訳(メタデータ) (2024-01-06T07:30:41Z) - RadOcc: Learning Cross-Modality Occupancy Knowledge through Rendering
Assisted Distillation [50.35403070279804]
マルチビュー画像を用いた3次元シーンの占有状況とセマンティクスを推定することを目的とした,新たな課題である3D占有予測手法を提案する。
本稿では,RandOccを提案する。Rendering Assisted distillation paradigm for 3D Occupancy prediction。
論文 参考訳(メタデータ) (2023-12-19T03:39:56Z) - Multi-Resolution Planar Region Extraction for Uneven Terrains [6.482137641059034]
本稿では,不整点雲観測から不均質な地形の平面領域を抽出する問題について検討する。
境界の精度と計算効率のバランスをとる多分解能平面領域抽出戦略を提案する。
論文 参考訳(メタデータ) (2023-11-21T12:17:51Z) - Leveraging Neural Radiance Fields for Uncertainty-Aware Visual
Localization [56.95046107046027]
我々は,Neural Radiance Fields (NeRF) を用いてシーン座標回帰のためのトレーニングサンプルを生成することを提案する。
レンダリングにおけるNeRFの効率にもかかわらず、レンダリングされたデータの多くはアーティファクトによって汚染されるか、最小限の情報ゲインしか含まない。
論文 参考訳(メタデータ) (2023-10-10T20:11:13Z) - Domain Reduction Strategy for Non Line of Sight Imaging [20.473142941237015]
非視線イメージング(NLOS)では、対象物体の可視光面は顕著に希薄である。
隠れ空間から連続的にサンプリングされた点集合からの部分的伝播を通して過渡現象を描画する手法を設計する。
本手法は,表面標準値を用いたビュー依存リフレクタンスを高精度かつ効率的にモデル化することができる。
論文 参考訳(メタデータ) (2023-08-20T14:00:33Z) - LoLep: Single-View View Synthesis with Locally-Learned Planes and
Self-Attention Occlusion Inference [66.45326873274908]
本稿では,1枚のRGB画像から局所学習平面を回帰してシーンを正確に表現するLoLepを提案する。
MINEと比較して、LPIPSは4.8%-9.0%、RVは73.9%-83.5%である。
論文 参考訳(メタデータ) (2023-07-23T03:38:55Z) - Subspace Perturbation Analysis for Data-Driven Radar Target Localization [20.34399283905663]
我々は、サブスペース分析を用いて、ミスマッチしたシナリオ間でレーダーターゲットのローカライゼーション精度をベンチマークする。
ミスマッチした制約領域に変動強度のターゲットをランダムに配置することで、包括的データセットを生成する。
畳み込みニューラルネットワークを用いて,これらの熱マップテンソルからターゲット位置を推定する。
論文 参考訳(メタデータ) (2023-03-14T21:22:26Z) - Salient Objects in Clutter [130.63976772770368]
本稿では,既存の正当性オブジェクト検出(SOD)データセットの重大な設計バイアスを特定し,対処する。
この設計バイアスは、既存のデータセットで評価した場合、最先端のSODモデルのパフォーマンスの飽和につながった。
我々は,新しい高品質データセットを提案し,前回のsaliencyベンチマークを更新する。
論文 参考訳(メタデータ) (2021-05-07T03:49:26Z) - Cycle and Semantic Consistent Adversarial Domain Adaptation for Reducing
Simulation-to-Real Domain Shift in LiDAR Bird's Eye View [110.83289076967895]
ドメイン適応プロセス中に関心のある小さなオブジェクトの情報を保存するために,事前の意味分類を用いたサイクガンに基づくbevドメイン適応法を提案する。
生成したBEVの品質は,KITTI 3D Object Detection Benchmarkの最先端3Dオブジェクト検出フレームワークを用いて評価されている。
論文 参考訳(メタデータ) (2021-04-22T12:47:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。