論文の概要: Enhancing Uncertainty Quantification in Drug Discovery with Censored Regression Labels
- arxiv url: http://arxiv.org/abs/2409.04313v1
- Date: Fri, 6 Sep 2024 14:38:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-09 15:34:51.348115
- Title: Enhancing Uncertainty Quantification in Drug Discovery with Censored Regression Labels
- Title(参考訳): 薬物発見における不確かさの定量化
- Authors: Emma Svensson, Hannah Rosa Friesacher, Susanne Winiwarter, Lewis Mervin, Adam Arany, Ola Engkvist,
- Abstract要約: 私たちはアンサンブルベース、ベイジアン、ガウシアンのモデルを検閲されたラベルから学ぶためのツールで適応します。
以上の結果から,検閲されたラベルから得られる部分的な情報にもかかわらず,実際の医薬品設定を正確かつ確実にモデル化することが不可欠であることが示唆された。
- 参考スコア(独自算出の注目度): 1.9354018523009415
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the early stages of drug discovery, decisions regarding which experiments to pursue can be influenced by computational models. These decisions are critical due to the time-consuming and expensive nature of the experiments. Therefore, it is becoming essential to accurately quantify the uncertainty in machine learning predictions, such that resources can be used optimally and trust in the models improves. While computational methods for drug discovery often suffer from limited data and sparse experimental observations, additional information can exist in the form of censored labels that provide thresholds rather than precise values of observations. However, the standard approaches that quantify uncertainty in machine learning cannot fully utilize censored labels. In this work, we adapt ensemble-based, Bayesian, and Gaussian models with tools to learn from censored labels by using the Tobit model from survival analysis. Our results demonstrate that despite the partial information available in censored labels, they are essential to accurately and reliably model the real pharmaceutical setting.
- Abstract(参考訳): 薬物発見の初期段階において、どの実験を追求するかの決定は、計算モデルの影響を受け得る。
これらの決定は、実験の時間と費用のかかる性質のために重要である。
そのため、機械学習予測における不確実性を正確に定量化することが重要となり、資源を最適に利用でき、モデルへの信頼が向上する。
薬物発見のための計算手法は、しばしば限られたデータと希少な実験的な観察に悩まされるが、正確な観察値ではなく閾値を提供する検閲されたラベルの形で追加情報が存在する。
しかし、機械学習における不確実性を定量化する標準的なアプローチは、検閲されたラベルを完全に活用することはできない。
本研究では, アンサンブルベース, ベイズモデル, ガウスモデルに適応し, 生存分析からTobitモデルを用いて, 検閲されたラベルから学習する。
以上の結果から,検閲されたラベルから得られる部分的な情報にもかかわらず,実際の医薬品設定を正確かつ確実にモデル化することが不可欠であることが示唆された。
関連論文リスト
- Evaluation of uncertainty estimations for Gaussian process regression based machine learning interatomic potentials [0.0]
機械学習の原子間ポテンシャルの不確実性推定は、導入した追加モデルエラーの定量化に不可欠である。
我々は、クーロンおよびSOAP表現を持つGPRモデルを、ポテンシャルエネルギー表面と分子の励起エネルギーを予測する入力として考える。
我々は,GPRの分散とアンサンブルに基づく不確かさが誤差とどのように関係しているか,また,固定された構成空間から最も不確実なサンプルを選択することによりモデル性能が向上するかを評価する。
論文 参考訳(メタデータ) (2024-10-27T10:06:09Z) - Unlearnable Examples Detection via Iterative Filtering [84.59070204221366]
ディープニューラルネットワークは、データ中毒攻撃に弱いことが証明されている。
混合データセットから有毒なサンプルを検出することは極めて有益であり、困難である。
UE識別のための反復フィルタリング手法を提案する。
論文 参考訳(メタデータ) (2024-08-15T13:26:13Z) - Achieving Well-Informed Decision-Making in Drug Discovery: A Comprehensive Calibration Study using Neural Network-Based Structure-Activity Models [4.619907534483781]
薬物と標的の相互作用を予測する計算モデルは、新しい治療薬の開発を加速するための貴重なツールである。
しかし、そのようなモデルはキャリブレーションが不十分であり、信頼性の低い不確実性推定をもたらす。
本研究では,ポストホックキャリブレーション法と不確実な定量化手法を組み合わせることで,モデルの精度とキャリブレーションを向上できることを示す。
論文 参考訳(メタデータ) (2024-07-19T10:29:00Z) - Automated Labeling of German Chest X-Ray Radiology Reports using Deep
Learning [50.591267188664666]
本稿では,ルールベースのドイツ語CheXpertモデルによってラベル付けされたレポートに基づいて,ディープラーニングに基づくCheXpertラベル予測モデルを提案する。
その結果,3つのタスクすべてにおいて,ルールベースモデルを大幅に上回ったアプローチの有効性が示された。
論文 参考訳(メタデータ) (2023-06-09T16:08:35Z) - InstructBio: A Large-scale Semi-supervised Learning Paradigm for
Biochemical Problems [38.57333125315448]
InstructMolは、ラベルなし例をうまく活用するための半教師付き学習アルゴリズムである。
InstructBioは分子モデルの一般化能力を大幅に改善する。
論文 参考訳(メタデータ) (2023-04-08T04:19:22Z) - Towards Reliable Medical Image Segmentation by utilizing Evidential Calibrated Uncertainty [52.03490691733464]
本稿では,医療画像セグメンテーションネットワークにシームレスに統合可能な,実装が容易な基礎モデルであるDEviSを紹介する。
主観的論理理論を利用して、医用画像分割の問題に対する確率と不確実性を明示的にモデル化する。
DeviSには不確実性を考慮したフィルタリングモジュールが組み込まれている。
論文 参考訳(メタデータ) (2023-01-01T05:02:46Z) - Theoretical characterization of uncertainty in high-dimensional linear
classification [24.073221004661427]
本研究では,高次元入力データとラベルの限られたサンプル数から学習する不確実性が,近似メッセージパッシングアルゴリズムによって得られることを示す。
我々は,信頼度を適切に正則化することで緩和する方法について論じるとともに,損失に対するクロスバリデーションが0/1誤差よりもキャリブレーションが優れていることを示す。
論文 参考訳(メタデータ) (2022-02-07T15:32:07Z) - Taming Overconfident Prediction on Unlabeled Data from Hindsight [50.9088560433925]
ラベルのないデータに対する予測の不確実性を最小化することは、半教師付き学習において優れた性能を達成するための鍵となる要素である。
本稿では,アダプティブシャーニング(Adaptive Sharpening, ADS)と呼ばれる2つのメカニズムを提案する。
ADSは、プラグインにすることで最先端のSSLメソッドを大幅に改善する。
論文 参考訳(メタデータ) (2021-12-15T15:17:02Z) - Evaluating State-of-the-Art Classification Models Against Bayes
Optimality [106.50867011164584]
正規化フローを用いて学習した生成モデルのベイズ誤差を正確に計算できることを示す。
われわれの手法を用いて、最先端の分類モデルについて徹底的な調査を行う。
論文 参考訳(メタデータ) (2021-06-07T06:21:20Z) - Calibration of prediction rules for life-time outcomes using prognostic
Cox regression survival models and multiple imputations to account for
missing predictor data with cross-validatory assessment [0.0]
検閲対象の生存モデルにおけるインプテーションと予測キャリブレーションを組み合わせた手法について述べる。
予測平均化は、ルービンの規則の直接適用とは対照的に、優れた統計的特性、特により小さい予測的変化を有するように見える。
論文 参考訳(メタデータ) (2021-05-04T20:10:12Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。