Enhancing Skin Lesion Diagnosis with Ensemble Learning
- URL: http://arxiv.org/abs/2409.04381v1
- Date: Fri, 6 Sep 2024 16:19:01 GMT
- Title: Enhancing Skin Lesion Diagnosis with Ensemble Learning
- Authors: Xiaoyi Liu, Zhou Yu, Lianghao Tan, Yafeng Yan, Ge Shi,
- Abstract summary: This study examines the implementation of deep learning methods to assist in the diagnosis of skin lesions using the HAM10000 dataset.
To further enhance classification accuracy, we developed ensemble models employing max voting, average voting, and stacking, resulting in accuracies of 0.803, 0.82, and 0.83.
Building on the best-performing ensemble learning model, stacking, we developed our proposed model, SkinNet, which incorporates a customized architecture and fine-tuning, achieving an accuracy of 0.867 and an AUC of 0.96.
- Score: 15.569484546674776
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Skin lesions are an increasingly significant medical concern, varying widely in severity from benign to cancerous. Accurate diagnosis is essential for ensuring timely and appropriate treatment. This study examines the implementation of deep learning methods to assist in the diagnosis of skin lesions using the HAM10000 dataset, which contains seven distinct types of lesions. First, we evaluated three pre-trained models: MobileNetV2, ResNet18, and VGG11, achieving accuracies of 0.798, 0.802, and 0.805, respectively. To further enhance classification accuracy, we developed ensemble models employing max voting, average voting, and stacking, resulting in accuracies of 0.803, 0.82, and 0.83. Building on the best-performing ensemble learning model, stacking, we developed our proposed model, SkinNet, which incorporates a customized architecture and fine-tuning, achieving an accuracy of 0.867 and an AUC of 0.96. This substantial improvement over individual models demonstrates the effectiveness of ensemble learning in improving skin lesion classification.
Related papers
- An Integrated Deep Learning Model for Skin Cancer Detection Using Hybrid Feature Fusion Technique [2.621434923709917]
Skin cancer is a serious and potentially fatal disease caused by DNA damage.
In this study, we present a hybrid framework based on Deep Learning (DL) that achieves precise classification of skin lesions.
We achieve a 92.27% detection accuracy rate, 92.33% sensitivity, 92.22% specificity, 90.81% precision, and 91.57% F1-score.
arXiv Detail & Related papers (2024-10-18T14:19:13Z) - Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
Co-deletion of the 1p/19q gene is associated with clinical outcomes in low-grade gliomas.
This study aims to utilize a specially MRI-based convolutional neural network for brain cancer detection.
arXiv Detail & Related papers (2024-09-29T07:04:26Z) - Enhanced Prediction of Ventilator-Associated Pneumonia in Patients with Traumatic Brain Injury Using Advanced Machine Learning Techniques [0.0]
Ventilator-associated pneumonia (VAP) in traumatic brain injury (TBI) patients poses a significant mortality risk.
Timely detection and prognostication of VAP in TBI patients are crucial to improve patient outcomes and alleviate the strain on healthcare resources.
We implemented six machine learning models using the MIMIC-III database.
arXiv Detail & Related papers (2024-08-02T09:44:18Z) - Enhancing Skin Disease Classification Leveraging Transformer-based Deep Learning Architectures and Explainable AI [2.3149142745203326]
Skin diseases affect over a third of the global population, yet their impact is often underestimated.
Deep learning techniques have shown much promise for various tasks, including dermatological disease identification.
This study uses a skin disease dataset with 31 classes and compares it with all versions of Vision Transformers, Swin Transformers and DivoV2.
arXiv Detail & Related papers (2024-07-20T05:38:00Z) - Advanced Predictive Modeling for Enhanced Mortality Prediction in ICU Stroke Patients Using Clinical Data [0.0]
Stroke is second-leading cause of disability and death among adults.
Approximately 17 million people suffer from a stroke annually, with about 85% being ischemic strokes.
We developed a deep learning model to assess mortality risk and implemented several baseline machine learning models for comparison.
arXiv Detail & Related papers (2024-07-19T11:17:42Z) - SkinSAM: Empowering Skin Cancer Segmentation with Segment Anything Model [2.752682633344525]
SkinSAM is a fine-tuned model based on the Segment Anything Model that showed outstanding segmentation performance.
The models are validated on HAM10000 dataset which includes 10015 dermatoscopic images.
arXiv Detail & Related papers (2023-04-27T06:42:59Z) - Learning to diagnose cirrhosis from radiological and histological labels
with joint self and weakly-supervised pretraining strategies [62.840338941861134]
We propose to leverage transfer learning from large datasets annotated by radiologists, to predict the histological score available on a small annex dataset.
We compare different pretraining methods, namely weakly-supervised and self-supervised ones, to improve the prediction of the cirrhosis.
This method outperforms the baseline classification of the METAVIR score, reaching an AUC of 0.84 and a balanced accuracy of 0.75.
arXiv Detail & Related papers (2023-02-16T17:06:23Z) - SSD-KD: A Self-supervised Diverse Knowledge Distillation Method for
Lightweight Skin Lesion Classification Using Dermoscopic Images [62.60956024215873]
Skin cancer is one of the most common types of malignancy, affecting a large population and causing a heavy economic burden worldwide.
Most studies in skin cancer detection keep pursuing high prediction accuracies without considering the limitation of computing resources on portable devices.
This study specifically proposes a novel method, termed SSD-KD, that unifies diverse knowledge into a generic KD framework for skin diseases classification.
arXiv Detail & Related papers (2022-03-22T06:54:29Z) - Systematic Clinical Evaluation of A Deep Learning Method for Medical
Image Segmentation: Radiosurgery Application [48.89674088331313]
We systematically evaluate a Deep Learning (DL) method in a 3D medical image segmentation task.
Our method is integrated into the radiosurgery treatment process and directly impacts the clinical workflow.
arXiv Detail & Related papers (2021-08-21T16:15:40Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
The framework includes deep-learning models at the swallow-level stage and feature-based machine learning models at the study-level stage.
This is the first artificial-intelligence-style model to automatically predict CC diagnosis of HRM study from raw multi-swallow data.
arXiv Detail & Related papers (2021-06-25T20:09:23Z) - Deep learning-based COVID-19 pneumonia classification using chest CT
images: model generalizability [54.86482395312936]
Deep learning (DL) classification models were trained to identify COVID-19-positive patients on 3D computed tomography (CT) datasets from different countries.
We trained nine identical DL-based classification models by using combinations of the datasets with a 72% train, 8% validation, and 20% test data split.
The models trained on multiple datasets and evaluated on a test set from one of the datasets used for training performed better.
arXiv Detail & Related papers (2021-02-18T21:14:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.