HiSC4D: Human-centered interaction and 4D Scene Capture in Large-scale Space Using Wearable IMUs and LiDAR
- URL: http://arxiv.org/abs/2409.04398v3
- Date: Sat, 14 Sep 2024 15:48:40 GMT
- Title: HiSC4D: Human-centered interaction and 4D Scene Capture in Large-scale Space Using Wearable IMUs and LiDAR
- Authors: Yudi Dai, Zhiyong Wang, Xiping Lin, Chenglu Wen, Lan Xu, Siqi Shen, Yuexin Ma, Cheng Wang,
- Abstract summary: We introduce HiSC4D, a novel Human-centered interaction and 4D Scene Capture method.
By utilizing body-mounted IMUs and a head-mounted LiDAR, HiSC4D can capture egocentric human motions in unconstrained space.
We present a dataset, containing 8 sequences in 4 large scenes (200 to 5,000 $m2$), providing 36k frames of accurate 4D human motions.
- Score: 43.43745311617461
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We introduce HiSC4D, a novel Human-centered interaction and 4D Scene Capture method, aimed at accurately and efficiently creating a dynamic digital world, containing large-scale indoor-outdoor scenes, diverse human motions, rich human-human interactions, and human-environment interactions. By utilizing body-mounted IMUs and a head-mounted LiDAR, HiSC4D can capture egocentric human motions in unconstrained space without the need for external devices and pre-built maps. This affords great flexibility and accessibility for human-centered interaction and 4D scene capturing in various environments. Taking into account that IMUs can capture human spatially unrestricted poses but are prone to drifting for long-period using, and while LiDAR is stable for global localization but rough for local positions and orientations, HiSC4D employs a joint optimization method, harmonizing all sensors and utilizing environment cues, yielding promising results for long-term capture in large scenes. To promote research of egocentric human interaction in large scenes and facilitate downstream tasks, we also present a dataset, containing 8 sequences in 4 large scenes (200 to 5,000 $m^2$), providing 36k frames of accurate 4D human motions with SMPL annotations and dynamic scenes, 31k frames of cropped human point clouds, and scene mesh of the environment. A variety of scenarios, such as the basketball gym and commercial street, alongside challenging human motions, such as daily greeting, one-on-one basketball playing, and tour guiding, demonstrate the effectiveness and the generalization ability of HiSC4D. The dataset and code will be publicated on www.lidarhumanmotion.net/hisc4d available for research purposes.
Related papers
- Harmony4D: A Video Dataset for In-The-Wild Close Human Interactions [27.677520981665012]
Harmony4D is a dataset for human-human interaction featuring in-the-wild activities such as wrestling, dancing, MMA, and more.
We use a flexible multi-view capture system to record these dynamic activities and provide annotations for human detection, tracking, 2D/3D pose estimation, and mesh recovery for closely interacting subjects.
arXiv Detail & Related papers (2024-10-27T00:05:15Z) - AvatarGO: Zero-shot 4D Human-Object Interaction Generation and Animation [60.5897687447003]
AvatarGO is a novel framework designed to generate realistic 4D HOI scenes from textual inputs.
Our framework not only generates coherent compositional motions, but also exhibits greater robustness in handling issues.
As the first attempt to synthesize 4D avatars with object interactions, we hope AvatarGO could open new doors for human-centric 4D content creation.
arXiv Detail & Related papers (2024-10-09T17:58:56Z) - Revisit Human-Scene Interaction via Space Occupancy [55.67657438543008]
Human-scene Interaction (HSI) generation is a challenging task and crucial for various downstream tasks.
In this work, we argue that interaction with a scene is essentially interacting with the space occupancy of the scene from an abstract physical perspective.
By treating pure motion sequences as records of humans interacting with invisible scene occupancy, we can aggregate motion-only data into a large-scale paired human-occupancy interaction database.
arXiv Detail & Related papers (2023-12-05T12:03:00Z) - CIRCLE: Capture In Rich Contextual Environments [69.97976304918149]
We propose a novel motion acquisition system in which the actor perceives and operates in a highly contextual virtual world.
We present CIRCLE, a dataset containing 10 hours of full-body reaching motion from 5 subjects across nine scenes.
We use this dataset to train a model that generates human motion conditioned on scene information.
arXiv Detail & Related papers (2023-03-31T09:18:12Z) - SLOPER4D: A Scene-Aware Dataset for Global 4D Human Pose Estimation in
Urban Environments [0.0]
We present SLOPER4D, a novel scene-aware dataset collected in large urban environments.
We record 12 human subjects' activities over 10 diverse urban scenes from an egocentric view.
SLOPER4D consists of 15 sequences of human motions, each of which has a trajectory length of more than 200 meters.
arXiv Detail & Related papers (2023-03-16T05:54:15Z) - HSC4D: Human-centered 4D Scene Capture in Large-scale Indoor-outdoor
Space Using Wearable IMUs and LiDAR [51.9200422793806]
Using only body-mounted IMUs and LiDAR, HSC4D is space-free without any external devices' constraints and map-free without pre-built maps.
Relationships between humans and environments are also explored to make their interaction more realistic.
arXiv Detail & Related papers (2022-03-17T10:05:55Z) - Human POSEitioning System (HPS): 3D Human Pose Estimation and
Self-localization in Large Scenes from Body-Mounted Sensors [71.29186299435423]
We introduce (HPS) Human POSEitioning System, a method to recover the full 3D pose of a human registered with a 3D scan of the surrounding environment.
We show that our optimization-based integration exploits the benefits of the two, resulting in pose accuracy free of drift.
HPS could be used for VR/AR applications where humans interact with the scene without requiring direct line of sight with an external camera.
arXiv Detail & Related papers (2021-03-31T17:58:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.