Quantum Kernel Methods under Scrutiny: A Benchmarking Study
- URL: http://arxiv.org/abs/2409.04406v2
- Date: Thu, 26 Sep 2024 17:38:26 GMT
- Title: Quantum Kernel Methods under Scrutiny: A Benchmarking Study
- Authors: Jan Schnabel, Marco Roth,
- Abstract summary: Two common approaches for computing the underlying Gram matrix have emerged: fidelity quantum kernels (FQKs) and projected quantum kernels (PQKs)
We present a comprehensive large-scale study examining QKMs based on FQKs and PQKs across a manifold of design choices.
Our goal is not to identify the best-performing model for a specific task but to uncover the mechanisms that lead to effective QKMs.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Since the entry of kernel theory in the field of quantum machine learning, quantum kernel methods (QKMs) have gained increasing attention with regard to both probing promising applications and delivering intriguing research insights. Two common approaches for computing the underlying Gram matrix have emerged: fidelity quantum kernels (FQKs) and projected quantum kernels (PQKs). Benchmarking these methods is crucial to gain robust insights and to understand their practical utility. In this work, we present a comprehensive large-scale study examining QKMs based on FQKs and PQKs across a manifold of design choices. Our investigation encompasses both classification and regression tasks for five dataset families and 64 datasets, systematically comparing the use of FQKs and PQKs quantum support vector machines and kernel ridge regression. This resulted in over 20,000 models that were trained and optimized using a state-of-the-art hyperparameter search to ensure robust and comprehensive insights. We delve into the importance of hyperparameters on model performance scores and support our findings through rigorous correlation analyses. In this, we also closely inspect two data encoding strategies. Moreover, we provide an in-depth analysis addressing the design freedom of PQKs and explore the underlying principles responsible for learning. Our goal is not to identify the best-performing model for a specific task but to uncover the mechanisms that lead to effective QKMs and reveal universal patterns.
Related papers
- Benchmarking quantum machine learning kernel training for classification tasks [0.0]
This work performs a benchmark study of Quantum Kernel Estimation (QKE) and Quantum Kernel Training (QKT) with a focus on classification tasks.
Two quantum feature mappings, namely ZZFeatureMap and CovariantFeatureMap, are analyzed in this context.
Experimental results indicate that quantum methods exhibit varying performance across different datasets.
arXiv Detail & Related papers (2024-08-17T10:53:06Z) - Kernel Alignment for Quantum Support Vector Machines Using Genetic
Algorithms [0.0]
We leverage the GASP (Genetic Algorithm for State Preparation) framework for gate sequence selection in QSVM kernel circuits.
Benchmarking against classical and quantum kernels reveals GA-generated circuits matching or surpassing standard techniques.
Our automated framework reduces trial and error, and enables improved QSVM based machine learning performance for finance, healthcare, and materials science applications.
arXiv Detail & Related papers (2023-12-04T01:36:26Z) - QKSAN: A Quantum Kernel Self-Attention Network [53.96779043113156]
A Quantum Kernel Self-Attention Mechanism (QKSAM) is introduced to combine the data representation merit of Quantum Kernel Methods (QKM) with the efficient information extraction capability of SAM.
A Quantum Kernel Self-Attention Network (QKSAN) framework is proposed based on QKSAM, which ingeniously incorporates the Deferred Measurement Principle (DMP) and conditional measurement techniques.
Four QKSAN sub-models are deployed on PennyLane and IBM Qiskit platforms to perform binary classification on MNIST and Fashion MNIST.
arXiv Detail & Related papers (2023-08-25T15:08:19Z) - Semisupervised Anomaly Detection using Support Vector Regression with
Quantum Kernel [0.0]
Anomaly detection (AD) involves identifying observations or events that deviate in some way from the rest of the data.
This paper introduces an approach to semisupervised AD based on the reconstruction loss of a support vector regression (SVR) with quantum kernel.
It is shown that our SVR model with quantum kernel performs better than the SVR with RBF kernel as well as all other models, achieving highest mean AUC over all data sets.
arXiv Detail & Related papers (2023-08-01T15:00:14Z) - Weight Re-Mapping for Variational Quantum Algorithms [54.854986762287126]
We introduce the concept of weight re-mapping for variational quantum circuits (VQCs)
We employ seven distinct weight re-mapping functions to assess their impact on eight classification datasets.
Our results indicate that weight re-mapping can enhance the convergence speed of the VQC.
arXiv Detail & Related papers (2023-06-09T09:42:21Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
We focus on the case of learning with a single qubit, using data re-uploading techniques.
We implement the different proposed formulations in toy and real-world datasets using the qiskit quantum computing SDK.
arXiv Detail & Related papers (2022-11-23T18:25:32Z) - Deterministic and random features for large-scale quantum kernel machine [0.9404723842159504]
We show that the quantum kernel method (QKM) can be made scalable by using our proposed deterministic and random features.
Our numerical experiment, using datasets including $O(1,000) sim O(10,000)$ training data, supports the validity of our method.
arXiv Detail & Related papers (2022-09-05T13:22:34Z) - QSAN: A Near-term Achievable Quantum Self-Attention Network [73.15524926159702]
Self-Attention Mechanism (SAM) is good at capturing the internal connections of features.
A novel Quantum Self-Attention Network (QSAN) is proposed for image classification tasks on near-term quantum devices.
arXiv Detail & Related papers (2022-07-14T12:22:51Z) - Theory of Quantum Generative Learning Models with Maximum Mean
Discrepancy [67.02951777522547]
We study learnability of quantum circuit Born machines (QCBMs) and quantum generative adversarial networks (QGANs)
We first analyze the generalization ability of QCBMs and identify their superiorities when the quantum devices can directly access the target distribution.
Next, we prove how the generalization error bound of QGANs depends on the employed Ansatz, the number of qudits, and input states.
arXiv Detail & Related papers (2022-05-10T08:05:59Z) - Quantum circuit architecture search on a superconducting processor [56.04169357427682]
Variational quantum algorithms (VQAs) have shown strong evidences to gain provable computational advantages for diverse fields such as finance, machine learning, and chemistry.
However, the ansatz exploited in modern VQAs is incapable of balancing the tradeoff between expressivity and trainability.
We demonstrate the first proof-of-principle experiment of applying an efficient automatic ansatz design technique to enhance VQAs on an 8-qubit superconducting quantum processor.
arXiv Detail & Related papers (2022-01-04T01:53:42Z) - Quantum kernels for real-world predictions based on electronic health
records [0.0]
We report the first systematic investigation of empirical quantum advantage (EQA) in healthcare and life sciences.
For each configuration coordinate, we trained classical support vector machine (SVM) models based on radial basis function (RBF) kernels and quantum models with custom kernels using an IBM quantum computer.
We empirically identified regimes where quantum kernels could provide advantage on a particular data set and introduced a terrain ruggedness index, a metric to help quantitatively estimate how the accuracy of a given model will perform.
arXiv Detail & Related papers (2021-12-12T12:06:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.