論文の概要: Diff-INR: Generative Regularization for Electrical Impedance Tomography
- arxiv url: http://arxiv.org/abs/2409.04494v1
- Date: Fri, 6 Sep 2024 14:21:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-10 22:31:08.706669
- Title: Diff-INR: Generative Regularization for Electrical Impedance Tomography
- Title(参考訳): Diff-INR:電気インピーダンストモグラフィのための生成規則化
- Authors: Bowen Tong, Junwu Wang, Dong Liu,
- Abstract要約: 電気インピーダンストモグラフィ(EIT)は、境界測定から体内の導電率分布を再構成する。
EIT再構成は、正確な結果が複雑である不適切な非線形逆問題によって妨げられる。
拡散モデルを用いて生成正規化とインプリシットニューラル表現(INR)を組み合わせた新しい手法であるDiff-INRを提案する。
- 参考スコア(独自算出の注目度): 6.7667436349597985
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Electrical Impedance Tomography (EIT) is a non-invasive imaging technique that reconstructs conductivity distributions within a body from boundary measurements. However, EIT reconstruction is hindered by its ill-posed nonlinear inverse problem, which complicates accurate results. To tackle this, we propose Diff-INR, a novel method that combines generative regularization with Implicit Neural Representations (INR) through a diffusion model. Diff-INR introduces geometric priors to guide the reconstruction, effectively addressing the shortcomings of traditional regularization methods. By integrating a pre-trained diffusion regularizer with INR, our approach achieves state-of-the-art reconstruction accuracy in both simulation and experimental data. The method demonstrates robust performance across various mesh densities and hyperparameter settings, highlighting its flexibility and efficiency. This advancement represents a significant improvement in managing the ill-posed nature of EIT. Furthermore, the method's principles are applicable to other imaging modalities facing similar challenges with ill-posed inverse problems.
- Abstract(参考訳): 電気インピーダンストモグラフィ(EIT)は、境界測定から体内の伝導率分布を再構成する非侵襲イメージング技術である。
しかし、EIT再構成は、正確な結果が複雑である不測の非線形逆問題によって妨げられている。
そこで本研究では,拡散モデルを用いて生成正則化とインプリシットニューラル表現(INR)を組み合わせた新しい手法であるDiff-INRを提案する。
Diff-INRは、従来の正規化手法の欠点を効果的に解決するために、再構成のガイドとなる幾何学的先行を導入している。
事前学習した拡散正則化器をINRに統合することにより,シミュレーションと実験データの両方で最先端の再現精度を実現する。
この方法は、様々なメッシュ密度とハイパーパラメータ設定にまたがる堅牢なパフォーマンスを示し、その柔軟性と効率を強調している。
この進歩は、EITの不正な性質を管理する上で大きな改善となる。
さらに、この手法の原理は、不適切な逆問題と同じような課題に直面している他の画像モダリティにも適用できる。
関連論文リスト
- Effective Diffusion Transformer Architecture for Image Super-Resolution [63.254644431016345]
画像超解像のための効果的な拡散変換器(DiT-SR)を設計する。
実際には、DiT-SRは全体のU字型アーキテクチャを活用し、すべての変圧器ブロックに対して均一な等方性設計を採用する。
我々は、広く使われているAdaLNの制限を分析し、周波数適応型時間-ステップ条件付けモジュールを提案する。
論文 参考訳(メタデータ) (2024-09-29T07:14:16Z) - Convex Latent-Optimized Adversarial Regularizers for Imaging Inverse
Problems [8.33626757808923]
本稿では,新しいデータ駆動型パラダイムであるConvex Latent-d Adrial Regularizers (CLEAR)を紹介する。
CLEARは、ディープラーニング(DL)と変分正規化の融合を表す。
本手法は従来型のデータ駆動手法と従来型の正規化手法を一貫して上回っている。
論文 参考訳(メタデータ) (2023-09-17T12:06:04Z) - SPIRiT-Diffusion: Self-Consistency Driven Diffusion Model for Accelerated MRI [14.545736786515837]
本稿では,k空間の拡散モデルであるSPIRiT-Diffusionを紹介する。
3次元頭蓋内および頸動脈壁画像データセットを用いたSPIRiT-Diffusion法の評価を行った。
論文 参考訳(メタデータ) (2023-04-11T08:43:52Z) - Deep unfolding as iterative regularization for imaging inverse problems [6.485466095579992]
ディープ展開法は、反復アルゴリズムを通じてディープニューラルネットワーク(DNN)の設計を導く。
展開されたDNNが安定して収束することを証明する。
提案手法が従来の展開法より優れていることを示す。
論文 参考訳(メタデータ) (2022-11-24T07:38:47Z) - JPEG Artifact Correction using Denoising Diffusion Restoration Models [110.1244240726802]
本稿では,DDRM(Denoising Diffusion Restoration Models)に基づいて,非線形逆問題の解法を提案する。
我々は、DDRMで使用される擬逆演算子を活用し、この概念を他の測度演算子に一般化する。
論文 参考訳(メタデータ) (2022-09-23T23:47:00Z) - Multi-Channel Convolutional Analysis Operator Learning for Dual-Energy
CT Reconstruction [108.06731611196291]
我々は,多チャンネル畳み込み解析演算子学習法(MCAOL)を開発した。
本研究では,低エネルギー,高エネルギーで減衰画像を共同で再構成する最適化手法を提案する。
論文 参考訳(メタデータ) (2022-03-10T14:22:54Z) - Equivariance Regularization for Image Reconstruction [5.025654873456756]
不完全な測定条件下での画像逆問題に対する構造適応正則化手法を提案する。
この正規化スキームは、測定の物理学における同変構造を利用して、逆問題の不当な位置を緩和する。
提案手法は,古典的な一階最適化アルゴリズムとともに,プラグ・アンド・プレイ方式で適用することができる。
論文 参考訳(メタデータ) (2022-02-10T14:38:08Z) - Denoising Diffusion Restoration Models [110.1244240726802]
Denoising Diffusion Restoration Models (DDRM) は効率的で教師なしの後方サンプリング手法である。
DDRMの汎用性を、超高解像度、デブロアリング、インペイント、カラー化のためにいくつかの画像データセットに示す。
論文 参考訳(メタデータ) (2022-01-27T20:19:07Z) - Deep Variational Network Toward Blind Image Restoration [60.45350399661175]
ブラインド画像復元はコンピュータビジョンでは一般的だが難しい問題である。
両利点を両立させることを目的として,新しいブラインド画像復元手法を提案する。
画像デノイングと超解像という2つの典型的なブラインド赤外線タスクの実験により,提案手法が現状よりも優れた性能を達成できることが実証された。
論文 参考訳(メタデータ) (2020-08-25T03:30:53Z) - Limited-angle tomographic reconstruction of dense layered objects by
dynamical machine learning [68.9515120904028]
強い散乱準透明物体の有限角トモグラフィーは困難で、非常に不適切な問題である。
このような問題の状況を改善することにより、アーティファクトの削減には、事前の定期化が必要である。
我々は,新しい分割畳み込みゲート再帰ユニット(SC-GRU)をビルディングブロックとして,リカレントニューラルネットワーク(RNN)アーキテクチャを考案した。
論文 参考訳(メタデータ) (2020-07-21T11:48:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。