論文の概要: Deep unfolding as iterative regularization for imaging inverse problems
- arxiv url: http://arxiv.org/abs/2211.13452v1
- Date: Thu, 24 Nov 2022 07:38:47 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-28 18:51:48.178589
- Title: Deep unfolding as iterative regularization for imaging inverse problems
- Title(参考訳): 画像逆問題に対する反復正則化としての深部展開
- Authors: Zhuo-Xu Cui and Qingyong Zhu and Jing Cheng and Dong Liang
- Abstract要約: ディープ展開法は、反復アルゴリズムを通じてディープニューラルネットワーク(DNN)の設計を導く。
展開されたDNNが安定して収束することを証明する。
提案手法が従来の展開法より優れていることを示す。
- 参考スコア(独自算出の注目度): 6.485466095579992
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, deep unfolding methods that guide the design of deep neural
networks (DNNs) through iterative algorithms have received increasing attention
in the field of inverse problems. Unlike general end-to-end DNNs, unfolding
methods have better interpretability and performance. However, to our
knowledge, their accuracy and stability in solving inverse problems cannot be
fully guaranteed. To bridge this gap, we modified the training procedure and
proved that the unfolding method is an iterative regularization method. More
precisely, we jointly learn a convex penalty function adversarially by an
input-convex neural network (ICNN) to characterize the distance to a real data
manifold and train a DNN unfolded from the proximal gradient descent algorithm
with this learned penalty. Suppose the real data manifold intersects the
inverse problem solutions with only the unique real solution. We prove that the
unfolded DNN will converge to it stably. Furthermore, we demonstrate with an
example of MRI reconstruction that the proposed method outperforms conventional
unfolding methods and traditional regularization methods in terms of
reconstruction quality, stability and convergence speed.
- Abstract(参考訳): 近年,深層ニューラルネットワーク(DNN)の設計を反復的アルゴリズムで導く深層展開法が,逆問題分野において注目されている。
一般的なエンドツーエンドのDNNとは異なり、展開メソッドは解釈性と性能が向上する。
しかし、我々の知る限り、逆問題の解法における精度と安定性は十分に保証できない。
このギャップを埋めるために,学習手順を変更し,展開法が反復正規化法であることを証明した。
より正確には、入力凸ニューラルネットワーク(ICNN)によって逆向きに凸ペナルティ関数を学習し、実データ多様体への距離を特徴付け、この学習ペナルティを用いて近勾配降下アルゴリズムから展開されたDNNを訓練する。
実データ多様体が唯一の実解のみで逆問題解と交差するとする。
展開されたDNNが安定して収束することを証明する。
さらに, 提案手法は, 従来の展開法や従来の正規化法よりも, 再構成品質, 安定性, 収束速度の点で優れていることを示す。
関連論文リスト
- A Primal-dual algorithm for image reconstruction with ICNNs [3.4797100095791706]
我々は、正規化器が入力ニューラルネットワーク(ICNN)によってパラメータ化されるデータ駆動変分フレームワークにおける最適化問題に対処する。
勾配に基づく手法はそのような問題を解決するのに一般的に用いられるが、非滑らかさを効果的に扱うのに苦労する。
提案手法は, 速度と安定性の両方の観点から, 下位段階の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-10-16T10:36:29Z) - Stable Nonconvex-Nonconcave Training via Linear Interpolation [51.668052890249726]
本稿では,ニューラルネットワークトレーニングを安定化(大規模)するための原理的手法として,線形アヘッドの理論解析を提案する。
最適化過程の不安定性は、しばしば損失ランドスケープの非単調性によって引き起こされるものであり、非拡張作用素の理論を活用することによって線型性がいかに役立つかを示す。
論文 参考訳(メタデータ) (2023-10-20T12:45:12Z) - INDigo: An INN-Guided Probabilistic Diffusion Algorithm for Inverse
Problems [31.693710075183844]
一般逆問題に対する非可逆ニューラルネットワーク(INN)と拡散モデルを組み合わせた手法を提案する。
具体的には、任意の劣化過程をシミュレートするためにINNの前方処理を訓練し、逆処理を再構成プロセスとして使用する。
本アルゴリズムは, 劣化過程で失われる詳細を効果的に推定し, 劣化モデルのクローズドフォーム表現を知る必要により, もはや制限されない。
論文 参考訳(メタデータ) (2023-06-05T15:14:47Z) - Stochastic Unrolled Federated Learning [85.6993263983062]
本稿では,UnRolled Federated Learning (SURF)を導入する。
提案手法は,この拡張における2つの課題,すなわち,非学習者へのデータセット全体の供給の必要性と,フェデレート学習の分散的性質に対処する。
論文 参考訳(メタデータ) (2023-05-24T17:26:22Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
物理インフォームドニューラルネットワーク(PINN)は、前方および逆微分方程式問題の解法として効果的に実証されている。
PINNは、近似すべきターゲット関数が高周波またはマルチスケールの特徴を示す場合、トレーニング障害に閉じ込められる。
本稿では,暗黙的勾配降下法(ISGD)を用いてPINNを訓練し,トレーニングプロセスの安定性を向上させることを提案する。
論文 参考訳(メタデータ) (2023-03-03T08:17:47Z) - Transformer Meets Boundary Value Inverse Problems [4.165221477234755]
変圧器を用いた深部直接サンプリング法は境界値逆問題のクラスを解くために提案される。
慎重に設計されたデータと再構成された画像の間に学習した逆演算子を評価することにより、リアルタイムな再構成を実現する。
論文 参考訳(メタデータ) (2022-09-29T17:45:25Z) - Learning Discriminative Shrinkage Deep Networks for Image Deconvolution [122.79108159874426]
本稿では,これらの用語を暗黙的にモデル化する識別的縮小関数を学習することで,効果的に非盲検デコンボリューション手法を提案する。
実験結果から,提案手法は最先端の手法に対して,効率と精度の点で好適に動作することがわかった。
論文 参考訳(メタデータ) (2021-11-27T12:12:57Z) - Robust lEarned Shrinkage-Thresholding (REST): Robust unrolling for
sparse recover [87.28082715343896]
我々は、モデルミス特定を前進させるのに堅牢な逆問題を解決するためのディープニューラルネットワークについて検討する。
我々は,アルゴリズムの展開手法を根底にある回復問題のロバストバージョンに適用することにより,新しい堅牢なディープニューラルネットワークアーキテクチャを設計する。
提案したRESTネットワークは,圧縮センシングとレーダイメージングの両問題において,最先端のモデルベースおよびデータ駆動アルゴリズムを上回る性能を示す。
論文 参考訳(メタデータ) (2021-10-20T06:15:45Z) - Learning Fast Approximations of Sparse Nonlinear Regression [50.00693981886832]
本研究では,Threshold Learned Iterative Shrinkage Algorithming (NLISTA)を導入することでギャップを埋める。
合成データを用いた実験は理論結果と相関し,その手法が最先端の手法より優れていることを示す。
論文 参考訳(メタデータ) (2020-10-26T11:31:08Z) - Learned convex regularizers for inverse problems [3.294199808987679]
本稿では,逆問題に対する正規化器として,データ適応型入力ニューラルネットワーク(ICNN)を学習することを提案する。
パラメータ空間における単調な誤差を反復で減少させる部分次アルゴリズムの存在を実証する。
提案した凸正則化器は, 逆問題に対する最先端のデータ駆動技術に対して, 少なくとも競争力があり, 時には優位であることを示す。
論文 参考訳(メタデータ) (2020-08-06T18:58:35Z) - A Novel Learnable Gradient Descent Type Algorithm for Non-convex
Non-smooth Inverse Problems [3.888272676868008]
本稿では,汎用アーキテクチャとニューラルネットワークを用いた逆問題の解法を提案する。
提案したネットワークは, 画像問題に対して, 効率と結果の点で, 状態再構成法よりも優れていた。
論文 参考訳(メタデータ) (2020-03-15T03:44:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。