論文の概要: Privacy-Preserving Race/Ethnicity Estimation for Algorithmic Bias Measurement in the U.S
- arxiv url: http://arxiv.org/abs/2409.04652v2
- Date: Mon, 16 Sep 2024 18:15:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-18 21:19:40.174342
- Title: Privacy-Preserving Race/Ethnicity Estimation for Algorithmic Bias Measurement in the U.S
- Title(参考訳): 米国におけるアルゴリズムバイアス計測のためのプライバシ保護レース/倫理性評価
- Authors: Saikrishna Badrinarayanan, Osonde Osoba, Miao Cheng, Ryan Rogers, Sakshi Jain, Rahul Tandra, Natesh S. Pillai,
- Abstract要約: 本稿では,プライバシ保存型確率的レース/倫理性推定(PPRE)手法を提案する。
PPREはBayesian Improved Surname Geocoding(BISG)モデルと、自己報告された人口統計の少ないLinkedIn調査サンプルと、セキュアな2要素計算や差分プライバシーといったプライバシ強化技術を組み合わせたものだ。
- 参考スコア(独自算出の注目度): 3.1683419855527357
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: AI fairness measurements, including tests for equal treatment, often take the form of disaggregated evaluations of AI systems. Such measurements are an important part of Responsible AI operations. These measurements compare system performance across demographic groups or sub-populations and typically require member-level demographic signals such as gender, race, ethnicity, and location. However, sensitive member-level demographic attributes like race and ethnicity can be challenging to obtain and use due to platform choices, legal constraints, and cultural norms. In this paper, we focus on the task of enabling AI fairness measurements on race/ethnicity for \emph{U.S. LinkedIn members} in a privacy-preserving manner. We present the Privacy-Preserving Probabilistic Race/Ethnicity Estimation (PPRE) method for performing this task. PPRE combines the Bayesian Improved Surname Geocoding (BISG) model, a sparse LinkedIn survey sample of self-reported demographics, and privacy-enhancing technologies like secure two-party computation and differential privacy to enable meaningful fairness measurements while preserving member privacy. We provide details of the PPRE method and its privacy guarantees. We then illustrate sample measurement operations. We conclude with a review of open research and engineering challenges for expanding our privacy-preserving fairness measurement capabilities.
- Abstract(参考訳): 平等な治療のためのテストを含むAI公正度測定は、しばしばAIシステムの非集約的な評価の形を取る。
このような測定は、Responsible AIオペレーションの重要な部分です。
これらの測定は、人口集団やサブ人口集団のシステムパフォーマンスを比較し、通常、性別、人種、民族、位置といったメンバーレベルの人口統計信号を必要とする。
しかし、人種や民族のような繊細なメンバーレベルの人口特性は、プラットフォームの選択、法的制約、文化規範のために入手し、利用することは困難である。
本稿では,<emph{U.S. LinkedIn member}の人種・民族性に関するAI公正度測定を,プライバシ保護の方法で実現するタスクに焦点をあてる。
本稿では,プライバシ保存型確率的レース/倫理性推定(PPRE)手法を提案する。
PPREはBayesian Improved Surname Geocoding(BISG)モデルと、自己報告の少ないLinkedIn調査サンプルと、セキュアな2要素計算や差分プライバシーといったプライバシ強化技術を組み合わせて、メンバーのプライバシを維持しながら有意義な公正度測定を可能にする。
PPRE法とそのプライバシー保証の詳細について述べる。
次に、サンプル測定操作を例示する。
プライバシー保護のための公正度測定能力を拡大するためのオープンリサーチとエンジニアリングの課題をレビューして締めくくります。
関連論文リスト
- Identifying Privacy Personas [27.301741710016223]
プライバシ・ペルソナは、自身の知識、行動パターン、自己効力度レベル、プライバシ保護の重要性に対する認識に関して、ユーザセグメントの違いを捉えている。
文学では様々なプライバシ・ペルソナが派生しているが、重要な属性の観点から異なる人物をまとめている。
本研究では,対話型教育アンケートに対する質的,定量的な回答分析を組み合わせることで導出する8つのペルソナを提案する。
論文 参考訳(メタデータ) (2024-10-17T20:49:46Z) - Privacy-Preserving Language Model Inference with Instance Obfuscation [33.86459812694288]
言語モデル・アズ・ア・サービス(LM)は、開発者や研究者が事前訓練された言語モデルを使用して推論を行うための便利なアクセスを提供する。
入力データとプライベート情報を含む推論結果は、サービスコール中にプレーンテキストとして公開され、プライバシー上の問題が発生する。
本稿では,自然言語理解タスクにおける決定プライバシ問題に対処することに焦点を当てた,インスタンス・オブフルスケート推論(IOI)手法を提案する。
論文 参考訳(メタデータ) (2024-02-13T05:36:54Z) - How Do Input Attributes Impact the Privacy Loss in Differential Privacy? [55.492422758737575]
DPニューラルネットワークにおけるオブジェクトごとの規範と個人のプライバシ損失との関係について検討する。
プライバシ・ロス・インプット・サセプティビリティ(PLIS)と呼ばれる新しい指標を導入し、被験者のプライバシ・ロスを入力属性に適応させることを可能にした。
論文 参考訳(メタデータ) (2022-11-18T11:39:03Z) - Ex-Ante Assessment of Discrimination in Dataset [20.574371560492494]
データ所有者は、自分たちのデータの使用が過小評価されているコミュニティにどのように害を与えるかという責任を負う。
本稿では, 個人の反応が感性特性によってどの程度異なるかを示すスコアを生成する, 決定トレエのForest of decision trEEsアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-08-16T19:28:22Z) - Demographic-Reliant Algorithmic Fairness: Characterizing the Risks of
Demographic Data Collection in the Pursuit of Fairness [0.0]
我々は、アルゴリズムの公正性を実現するために、人口統計に関するより多くのデータを集めることを検討する。
これらの技術は、データガバナンスとシステム抑圧に関するより広範な疑問を、いかに無視するかを示す。
論文 参考訳(メタデータ) (2022-04-18T04:50:09Z) - SF-PATE: Scalable, Fair, and Private Aggregation of Teacher Ensembles [50.90773979394264]
本稿では、個人の機密情報のプライバシーを保護しつつ、差別的でない予測者の学習を可能にするモデルについて検討する。
提案モデルの主な特徴は、プライバシ保護とフェアモデルを作成するために、オフ・ザ・セルフと非プライベートフェアモデルの採用を可能にすることである。
論文 参考訳(メタデータ) (2022-04-11T14:42:54Z) - Evaluating Proposed Fairness Models for Face Recognition Algorithms [0.0]
本稿では,米国と欧州の科学者による顔認識アルゴリズムの公正度(公正度)の2つの尺度を特徴付ける。
本稿では,顔認識アルゴリズムの公正度測定において望ましい特性の集合を概説した,機能的公正度基準(FFMC)と呼ばれる解釈可能性基準を提案する。
これは現在、この種のオープンソースデータセットとしては最大のものだと考えています。
論文 参考訳(メタデータ) (2022-03-09T21:16:43Z) - Measuring Fairness Under Unawareness of Sensitive Attributes: A
Quantification-Based Approach [131.20444904674494]
センシティブな属性の無意識下でのグループフェアネスを測定する問題に取り組む。
定量化手法は, フェアネスと無意識の問題に対処するのに特に適していることを示す。
論文 参考訳(メタデータ) (2021-09-17T13:45:46Z) - Estimation of Fair Ranking Metrics with Incomplete Judgments [70.37717864975387]
本研究では,4つの評価指標のサンプリング手法と推定手法を提案する。
ラベル付きアイテムの数が極めて少ない場合でも動作可能な頑健で偏りのない推定器を定式化する。
論文 参考訳(メタデータ) (2021-08-11T10:57:00Z) - Balancing Biases and Preserving Privacy on Balanced Faces in the Wild [50.915684171879036]
現在の顔認識(FR)モデルには、人口統計バイアスが存在する。
さまざまな民族と性別のサブグループにまたがる偏見を測定するために、我々のバランス・フェイススをWildデータセットに導入します。
真偽と偽のサンプルペアを区別するために1点のスコアしきい値に依存すると、最適以下の結果が得られます。
本稿では,最先端ニューラルネットワークから抽出した顔特徴を用いたドメイン適応学習手法を提案する。
論文 参考訳(メタデータ) (2021-03-16T15:05:49Z) - Differentially Private and Fair Deep Learning: A Lagrangian Dual
Approach [54.32266555843765]
本稿では,個人の機密情報のプライバシを保護するとともに,非差別的予測器の学習を可能にするモデルについて検討する。
この方法は、微分プライバシーの概念と、公正性制約を満たすニューラルネットワークの設計にラグランジアン双対性(Lagrangian duality)を用いることに依存している。
論文 参考訳(メタデータ) (2020-09-26T10:50:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。