論文の概要: Identifying Privacy Personas
- arxiv url: http://arxiv.org/abs/2410.14023v1
- Date: Thu, 17 Oct 2024 20:49:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-21 14:27:12.495764
- Title: Identifying Privacy Personas
- Title(参考訳): プライバシ・ペルソナの特定
- Authors: Olena Hrynenko, Andrea Cavallaro,
- Abstract要約: プライバシ・ペルソナは、自身の知識、行動パターン、自己効力度レベル、プライバシ保護の重要性に対する認識に関して、ユーザセグメントの違いを捉えている。
文学では様々なプライバシ・ペルソナが派生しているが、重要な属性の観点から異なる人物をまとめている。
本研究では,対話型教育アンケートに対する質的,定量的な回答分析を組み合わせることで導出する8つのペルソナを提案する。
- 参考スコア(独自算出の注目度): 27.301741710016223
- License:
- Abstract: Privacy personas capture the differences in user segments with respect to one's knowledge, behavioural patterns, level of self-efficacy, and perception of the importance of privacy protection. Modelling these differences is essential for appropriately choosing personalised communication about privacy (e.g. to increase literacy) and for defining suitable choices for privacy enhancing technologies (PETs). While various privacy personas have been derived in the literature, they group together people who differ from each other in terms of important attributes such as perceived or desired level of control, and motivation to use PET. To address this lack of granularity and comprehensiveness in describing personas, we propose eight personas that we derive by combining qualitative and quantitative analysis of the responses to an interactive educational questionnaire. We design an analysis pipeline that uses divisive hierarchical clustering and Boschloo's statistical test of homogeneity of proportions to ensure that the elicited clusters differ from each other based on a statistical measure. Additionally, we propose a new measure for calculating distances between questionnaire responses, that accounts for the type of the question (closed- vs open-ended) used to derive traits. We show that the proposed privacy personas statistically differ from each other. We statistically validate the proposed personas and also compare them with personas in the literature, showing that they provide a more granular and comprehensive understanding of user segments, which will allow to better assist users with their privacy needs.
- Abstract(参考訳): プライバシ・ペルソナは、自身の知識、行動パターン、自己効力度レベル、プライバシ保護の重要性に対する認識に関して、ユーザセグメントの違いを捉えている。
これらの違いをモデル化することは、プライバシーに関する個人化されたコミュニケーション(リテラシーの向上など)を適切に選択し、プライバシー強化技術(PET)の適切な選択を定義するために不可欠である。
文学において様々なプライバシ・ペルソナが導出されてきたが、認識やコントロールのレベル、PETの使用動機といった重要な属性において、互いに異なる人物をグループ化している。
人格記述における粒度と包括性の欠如に対処するために,対話型教育アンケートに対する回答の質的,定量的な分析を組み合わせることで導出した8つのペルソナを提案する。
本研究では,分割階層クラスタリングとボシュルーによる比例の均一性に関する統計的テストを用いた解析パイプラインの設計を行った。
また,質問応答間の距離を計算し,特徴を導出するための質問(クローズド対オープンエンド)の種類を考慮に入れた新しい尺度を提案する。
提案するプライバシ・ペルソナは統計的に異なることを示す。
提案したペルソナを統計的に検証し,文献上のペルソナと比較した結果,ユーザセグメントのよりきめ細やかな理解が得られ,ユーザのプライバシニーズをよりよく支援できることがわかった。
関連論文リスト
- Mind the Privacy Unit! User-Level Differential Privacy for Language Model Fine-Tuning [62.224804688233]
差分プライバシ(DP)は、モデルが特定のプライバシユニットで「ほとんど区別できない」ことを保証することで、有望なソリューションを提供する。
ユーザ間でのプライバシー保護の確保に必要なアプリケーションによって動機づけられたユーザレベルのDPについて検討する。
論文 参考訳(メタデータ) (2024-06-20T13:54:32Z) - Systematic Review on Privacy Categorization [1.5377372227901214]
本研究は,プライバシ分類に関する文献を体系的にレビューすることを目的としている。
プライバシーの分類には、特定の前提条件に従ってユーザーを分類する機能が含まれる。
論文 参考訳(メタデータ) (2023-07-07T15:18:26Z) - Enabling Trade-offs in Privacy and Utility in Genomic Data Beacons and
Summary Statistics [26.99521354120141]
要約データやBeaconの応答とプライバシを明示的にトレードオフするための最適化ベースのアプローチを導入します。
第一に、攻撃者はメンバーシップ推論のクレームを行うために確率比テストを適用する。
第2に、攻撃者は、個人間のスコアの分離に対するデータリリースの影響を考慮に入れたしきい値を使用する。
論文 参考訳(メタデータ) (2023-01-11T19:16:13Z) - How Do Input Attributes Impact the Privacy Loss in Differential Privacy? [55.492422758737575]
DPニューラルネットワークにおけるオブジェクトごとの規範と個人のプライバシ損失との関係について検討する。
プライバシ・ロス・インプット・サセプティビリティ(PLIS)と呼ばれる新しい指標を導入し、被験者のプライバシ・ロスを入力属性に適応させることを可能にした。
論文 参考訳(メタデータ) (2022-11-18T11:39:03Z) - On the Statistical Complexity of Estimation and Testing under Privacy Constraints [17.04261371990489]
差分プライバシー下での統計的テストのパワーをプラグアンドプレイ方式で特徴付ける方法を示す。
プライバシ保護のレベルが非常に高い場合にのみ、プライバシの維持が顕著なパフォーマンス低下をもたらすことを示す。
最後に,プライベート凸解法であるDP-SGLDアルゴリズムを高信頼度で最大推定できることを示した。
論文 参考訳(メタデータ) (2022-10-05T12:55:53Z) - Algorithms with More Granular Differential Privacy Guarantees [65.3684804101664]
我々は、属性ごとのプライバシー保証を定量化できる部分微分プライバシー(DP)について検討する。
本研究では,複数の基本データ分析および学習タスクについて検討し,属性ごとのプライバシパラメータが個人全体のプライバシーパラメータよりも小さい設計アルゴリズムについて検討する。
論文 参考訳(メタデータ) (2022-09-08T22:43:50Z) - "Am I Private and If So, how Many?" -- Using Risk Communication Formats
for Making Differential Privacy Understandable [0.0]
我々は、差別化プライバシのプライバシリスクモデルと合わせて、リスクコミュニケーションフォーマットを適応する。
我々はこれらの新しいプライバシーコミュニケーションフォーマットをクラウドソーシング研究で評価する。
論文 参考訳(メタデータ) (2022-04-08T13:30:07Z) - Partial sensitivity analysis in differential privacy [58.730520380312676]
それぞれの入力特徴が個人のプライバシ損失に与える影響について検討する。
プライベートデータベース上でのクエリに対する我々のアプローチを実験的に評価する。
また、合成データにおけるニューラルネットワークトレーニングの文脈における知見についても検討する。
論文 参考訳(メタデータ) (2021-09-22T08:29:16Z) - Robustness Threats of Differential Privacy [70.818129585404]
我々は、いくつかの設定で差分プライバシーをトレーニングしたネットワークが、非プライベートバージョンに比べてさらに脆弱であることを実験的に実証した。
本研究では,勾配クリッピングや雑音付加などのニューラルネットワークトレーニングの主成分が,モデルの堅牢性に与える影響について検討する。
論文 参考訳(メタデータ) (2020-12-14T18:59:24Z) - Differentially Private and Fair Deep Learning: A Lagrangian Dual
Approach [54.32266555843765]
本稿では,個人の機密情報のプライバシを保護するとともに,非差別的予測器の学習を可能にするモデルについて検討する。
この方法は、微分プライバシーの概念と、公正性制約を満たすニューラルネットワークの設計にラグランジアン双対性(Lagrangian duality)を用いることに依存している。
論文 参考訳(メタデータ) (2020-09-26T10:50:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。