Training-Free Point Cloud Recognition Based on Geometric and Semantic Information Fusion
- URL: http://arxiv.org/abs/2409.04760v3
- Date: Wed, 11 Sep 2024 07:43:45 GMT
- Title: Training-Free Point Cloud Recognition Based on Geometric and Semantic Information Fusion
- Authors: Yan Chen, Di Huang, Zhichao Liao, Xi Cheng, Xinghui Li, Lone Zeng,
- Abstract summary: We propose a training-free method that integrates both geometric and semantic features.
Our method outperforms existing state-of-the-art training-free approaches on mainstream benchmark datasets.
- Score: 18.588413607753278
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The trend of employing training-free methods for point cloud recognition is becoming increasingly popular due to its significant reduction in computational resources and time costs. However, existing approaches are limited as they typically extract either geometric or semantic features. To address this limitation, we are the first to propose a novel training-free method that integrates both geometric and semantic features. For the geometric branch, we adopt a non-parametric strategy to extract geometric features. In the semantic branch, we leverage a model aligned with text features to obtain semantic features. Additionally, we introduce the GFE module to complement the geometric information of point clouds and the MFF module to improve performance in few-shot settings. Experimental results demonstrate that our method outperforms existing state-of-the-art training-free approaches on mainstream benchmark datasets, including ModelNet and ScanObiectNN.
Related papers
- Unsupervised Non-Rigid Point Cloud Matching through Large Vision Models [1.3030624795284795]
We propose a learning-based framework for non-rigid point cloud matching.
Key insight is to incorporate semantic features derived from large vision models (LVMs)
Our framework effectively leverages the structural information contained in the semantic features to address ambiguities arise from self-similarities among local geometries.
arXiv Detail & Related papers (2024-08-16T07:02:19Z) - PointeNet: A Lightweight Framework for Effective and Efficient Point
Cloud Analysis [28.54939134635978]
PointeNet is a network designed specifically for point cloud analysis.
Our method demonstrates flexibility by seamlessly integrating with a classification/segmentation head or embedding into off-the-shelf 3D object detection networks.
Experiments on object-level datasets, including ModelNet40, ScanObjectNN, ShapeNet KITTI, and the scene-level dataset KITTI, demonstrate the superior performance of PointeNet over state-of-the-art methods in point cloud analysis.
arXiv Detail & Related papers (2023-12-20T03:34:48Z) - Human as Points: Explicit Point-based 3D Human Reconstruction from
Single-view RGB Images [78.56114271538061]
We introduce an explicit point-based human reconstruction framework called HaP.
Our approach is featured by fully-explicit point cloud estimation, manipulation, generation, and refinement in the 3D geometric space.
Our results may indicate a paradigm rollback to the fully-explicit and geometry-centric algorithm design.
arXiv Detail & Related papers (2023-11-06T05:52:29Z) - Generalized Few-Shot Point Cloud Segmentation Via Geometric Words [54.32239996417363]
Few-shot point cloud segmentation algorithms learn to adapt to new classes at the sacrifice of segmentation accuracy for the base classes.
We present the first attempt at a more practical paradigm of generalized few-shot point cloud segmentation.
We propose the geometric words to represent geometric components shared between the base and novel classes, and incorporate them into a novel geometric-aware semantic representation.
arXiv Detail & Related papers (2023-09-20T11:24:33Z) - Universal Domain Adaptation from Foundation Models: A Baseline Study [58.51162198585434]
We make empirical studies of state-of-the-art UniDA methods using foundation models.
We introduce textitCLIP distillation, a parameter-free method specifically designed to distill target knowledge from CLIP models.
Although simple, our method outperforms previous approaches in most benchmark tasks.
arXiv Detail & Related papers (2023-05-18T16:28:29Z) - GFNet: Geometric Flow Network for 3D Point Cloud Semantic Segmentation [91.15865862160088]
We introduce a geometric flow network (GFNet) to explore the geometric correspondence between different views in an align-before-fuse manner.
Specifically, we devise a novel geometric flow module (GFM) to bidirectionally align and propagate the complementary information across different views.
arXiv Detail & Related papers (2022-07-06T11:48:08Z) - Fusing the Old with the New: Learning Relative Camera Pose with
Geometry-Guided Uncertainty [91.0564497403256]
We present a novel framework that involves probabilistic fusion between the two families of predictions during network training.
Our network features a self-attention graph neural network, which drives the learning by enforcing strong interactions between different correspondences.
We propose motion parmeterizations suitable for learning and show that our method achieves state-of-the-art performance on the challenging DeMoN and ScanNet datasets.
arXiv Detail & Related papers (2021-04-16T17:59:06Z) - Deep Magnification-Flexible Upsampling over 3D Point Clouds [103.09504572409449]
We propose a novel end-to-end learning-based framework to generate dense point clouds.
We first formulate the problem explicitly, which boils down to determining the weights and high-order approximation errors.
Then, we design a lightweight neural network to adaptively learn unified and sorted weights as well as the high-order refinements.
arXiv Detail & Related papers (2020-11-25T14:00:18Z) - PointManifold: Using Manifold Learning for Point Cloud Classification [5.705680763604835]
We propose a point cloud classification method based on graph neural network and manifold learning.
This paper uses manifold learning algorithms to embed point cloud features for better considering continuity on the surface.
Experiments show that the proposed point cloud classification methods obtain the mean class accuracy (mA) of 90.2% and the overall accuracy (oA) of 93.2%.
arXiv Detail & Related papers (2020-10-14T16:28:19Z) - Improving Semantic Analysis on Point Clouds via Auxiliary Supervision of
Local Geometric Priors [34.4685487625487]
This paper is the first attempt to propose a unique multi-task geometric learning network to improve semantic analysis by auxiliary geometric learning with local shape properties.
The proposed geometric self-supervised and privileged learning algorithms can achieve superior performance to their backbones and other state-of-the-art methods.
arXiv Detail & Related papers (2020-01-14T14:33:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.